1
0
mirror of https://github.com/yldio/copilot.git synced 2024-12-05 01:20:08 +02:00
copilot/legacy/spikes/architecture/sigmajs/vendor/sigma.require.js
Sérgio Ramos 8295bd6882 chore: initial lerna setup
this shall be a progressive process
2017-05-25 10:56:50 +01:00

12077 lines
344 KiB
JavaScript

;(function(undefined) {
'use strict';
var __instances = {};
/**
* This is the sigma instances constructor. One instance of sigma represent
* one graph. It is possible to represent this grapĥ with several renderers
* at the same time. By default, the default renderer (WebGL + Canvas
* polyfill) will be used as the only renderer, with the container specified
* in the configuration.
*
* @param {?*} conf The configuration of the instance. There are a lot of
* different recognized forms to instantiate sigma, check
* example files, documentation in this file and unit
* tests to know more.
* @return {sigma} The fresh new sigma instance.
*
* Instanciating sigma:
* ********************
* If no parameter is given to the constructor, the instance will be created
* without any renderer or camera. It will just instantiate the graph, and
* other modules will have to be instantiated through the public methods,
* like "addRenderer" etc:
*
* > s0 = new sigma();
* > s0.addRenderer({
* > type: 'canvas',
* > container: 'my-container-id'
* > });
*
* In most of the cases, sigma will simply be used with the default renderer.
* Then, since the only required parameter is the DOM container, there are
* some simpler way to call the constructor. The four following calls do the
* exact same things:
*
* > s1 = new sigma('my-container-id');
* > s2 = new sigma(document.getElementById('my-container-id'));
* > s3 = new sigma({
* > container: document.getElementById('my-container-id')
* > });
* > s4 = new sigma({
* > renderers: [{
* > container: document.getElementById('my-container-id')
* > }]
* > });
*
* Recognized parameters:
* **********************
* Here is the exhaustive list of every accepted parameters, when calling the
* constructor with to top level configuration object (fourth case in the
* previous examples):
*
* {?string} id The id of the instance. It will be generated
* automatically if not specified.
* {?array} renderers An array containing objects describing renderers.
* {?object} graph An object containing an array of nodes and an array
* of edges, to avoid having to add them by hand later.
* {?object} settings An object containing instance specific settings that
* will override the default ones defined in the object
* sigma.settings.
*/
var sigma = function(conf) {
// Local variables:
// ****************
var i,
l,
a,
c,
o,
id;
sigma.classes.dispatcher.extend(this);
// Private attributes:
// *******************
var _self = this,
_conf = conf || {};
// Little shortcut:
// ****************
// The configuration is supposed to have a list of the configuration
// objects for each renderer.
// - If there are no configuration at all, then nothing is done.
// - If there are no renderer list, the given configuration object will be
// considered as describing the first and only renderer.
// - If there are no renderer list nor "container" object, it will be
// considered as the container itself (a DOM element).
// - If the argument passed to sigma() is a string, it will be considered
// as the ID of the DOM container.
if (
typeof _conf === 'string' ||
_conf instanceof HTMLElement
)
_conf = {
renderers: [_conf]
};
else if (Object.prototype.toString.call(_conf) === '[object Array]')
_conf = {
renderers: _conf
};
// Also check "renderer" and "container" keys:
o = _conf.renderers || _conf.renderer || _conf.container;
if (!_conf.renderers || _conf.renderers.length === 0)
if (
typeof o === 'string' ||
o instanceof HTMLElement ||
(typeof o === 'object' && 'container' in o)
)
_conf.renderers = [o];
// Recense the instance:
if (_conf.id) {
if (__instances[_conf.id])
throw 'sigma: Instance "' + _conf.id + '" already exists.';
Object.defineProperty(this, 'id', {
value: _conf.id
});
} else {
id = 0;
while (__instances[id])
id++;
Object.defineProperty(this, 'id', {
value: '' + id
});
}
__instances[this.id] = this;
// Initialize settings function:
this.settings = new sigma.classes.configurable(
sigma.settings,
_conf.settings || {}
);
// Initialize locked attributes:
Object.defineProperty(this, 'graph', {
value: new sigma.classes.graph(this.settings),
configurable: true
});
Object.defineProperty(this, 'middlewares', {
value: [],
configurable: true
});
Object.defineProperty(this, 'cameras', {
value: {},
configurable: true
});
Object.defineProperty(this, 'renderers', {
value: {},
configurable: true
});
Object.defineProperty(this, 'renderersPerCamera', {
value: {},
configurable: true
});
Object.defineProperty(this, 'cameraFrames', {
value: {},
configurable: true
});
Object.defineProperty(this, 'camera', {
get: function() {
return this.cameras[0];
}
});
Object.defineProperty(this, 'events', {
value: [
'click',
'rightClick',
'clickStage',
'doubleClickStage',
'rightClickStage',
'clickNode',
'clickNodes',
'doubleClickNode',
'doubleClickNodes',
'rightClickNode',
'rightClickNodes',
'overNode',
'overNodes',
'outNode',
'outNodes',
'downNode',
'downNodes',
'upNode',
'upNodes'
],
configurable: true
});
// Add a custom handler, to redispatch events from renderers:
this._handler = (function(e) {
var k,
data = {};
for (k in e.data)
data[k] = e.data[k];
data.renderer = e.target;
this.dispatchEvent(e.type, data);
}).bind(this);
// Initialize renderers:
a = _conf.renderers || [];
for (i = 0, l = a.length; i < l; i++)
this.addRenderer(a[i]);
// Initialize middlewares:
a = _conf.middlewares || [];
for (i = 0, l = a.length; i < l; i++)
this.middlewares.push(
typeof a[i] === 'string' ?
sigma.middlewares[a[i]] :
a[i]
);
// Check if there is already a graph to fill in:
if (typeof _conf.graph === 'object' && _conf.graph) {
this.graph.read(_conf.graph);
// If a graph is given to the to the instance, the "refresh" method is
// directly called:
this.refresh();
}
// Deal with resize:
window.addEventListener('resize', function() {
if (_self.settings)
_self.refresh();
});
};
/**
* This methods will instantiate and reference a new camera. If no id is
* specified, then an automatic id will be generated.
*
* @param {?string} id Eventually the camera id.
* @return {sigma.classes.camera} The fresh new camera instance.
*/
sigma.prototype.addCamera = function(id) {
var self = this,
camera;
if (!arguments.length) {
id = 0;
while (this.cameras['' + id])
id++;
id = '' + id;
}
if (this.cameras[id])
throw 'sigma.addCamera: The camera "' + id + '" already exists.';
camera = new sigma.classes.camera(id, this.graph, this.settings);
this.cameras[id] = camera;
// Add a quadtree to the camera:
camera.quadtree = new sigma.classes.quad();
// Add an edgequadtree to the camera:
if (sigma.classes.edgequad !== undefined) {
camera.edgequadtree = new sigma.classes.edgequad();
}
camera.bind('coordinatesUpdated', function(e) {
self.renderCamera(camera, camera.isAnimated);
});
this.renderersPerCamera[id] = [];
return camera;
};
/**
* This method kills a camera, and every renderer attached to it.
*
* @param {string|camera} v The camera to kill or its ID.
* @return {sigma} Returns the instance.
*/
sigma.prototype.killCamera = function(v) {
v = typeof v === 'string' ? this.cameras[v] : v;
if (!v)
throw 'sigma.killCamera: The camera is undefined.';
var i,
l,
a = this.renderersPerCamera[v.id];
for (l = a.length, i = l - 1; i >= 0; i--)
this.killRenderer(a[i]);
delete this.renderersPerCamera[v.id];
delete this.cameraFrames[v.id];
delete this.cameras[v.id];
if (v.kill)
v.kill();
return this;
};
/**
* This methods will instantiate and reference a new renderer. The "type"
* argument can be the constructor or its name in the "sigma.renderers"
* package. If no type is specified, then "sigma.renderers.def" will be used.
* If no id is specified, then an automatic id will be generated.
*
* @param {?object} options Eventually some options to give to the renderer
* constructor.
* @return {renderer} The fresh new renderer instance.
*
* Recognized parameters:
* **********************
* Here is the exhaustive list of every accepted parameters in the "options"
* object:
*
* {?string} id Eventually the renderer id.
* {?(function|string)} type Eventually the renderer constructor or its
* name in the "sigma.renderers" package.
* {?(camera|string)} camera Eventually the renderer camera or its
* id.
*/
sigma.prototype.addRenderer = function(options) {
var id,
fn,
camera,
renderer,
o = options || {};
// Polymorphism:
if (typeof o === 'string')
o = {
container: document.getElementById(o)
};
else if (o instanceof HTMLElement)
o = {
container: o
};
// If the container still is a string, we get it by id
if (typeof o.container === 'string')
o.container = document.getElementById(o.container);
// Reference the new renderer:
if (!('id' in o)) {
id = 0;
while (this.renderers['' + id])
id++;
id = '' + id;
} else
id = o.id;
if (this.renderers[id])
throw 'sigma.addRenderer: The renderer "' + id + '" already exists.';
// Find the good constructor:
fn = typeof o.type === 'function' ? o.type : sigma.renderers[o.type];
fn = fn || sigma.renderers.def;
// Find the good camera:
camera = 'camera' in o ?
(
o.camera instanceof sigma.classes.camera ?
o.camera :
this.cameras[o.camera] || this.addCamera(o.camera)
) :
this.addCamera();
if (this.cameras[camera.id] !== camera)
throw 'sigma.addRenderer: The camera is not properly referenced.';
// Instantiate:
renderer = new fn(this.graph, camera, this.settings, o);
this.renderers[id] = renderer;
Object.defineProperty(renderer, 'id', {
value: id
});
// Bind events:
if (renderer.bind)
renderer.bind(
[
'click',
'rightClick',
'clickStage',
'doubleClickStage',
'rightClickStage',
'clickNode',
'clickNodes',
'clickEdge',
'clickEdges',
'doubleClickNode',
'doubleClickNodes',
'doubleClickEdge',
'doubleClickEdges',
'rightClickNode',
'rightClickNodes',
'rightClickEdge',
'rightClickEdges',
'overNode',
'overNodes',
'overEdge',
'overEdges',
'outNode',
'outNodes',
'outEdge',
'outEdges',
'downNode',
'downNodes',
'downEdge',
'downEdges',
'upNode',
'upNodes',
'upEdge',
'upEdges'
],
this._handler
);
// Reference the renderer by its camera:
this.renderersPerCamera[camera.id].push(renderer);
return renderer;
};
/**
* This method kills a renderer.
*
* @param {string|renderer} v The renderer to kill or its ID.
* @return {sigma} Returns the instance.
*/
sigma.prototype.killRenderer = function(v) {
v = typeof v === 'string' ? this.renderers[v] : v;
if (!v)
throw 'sigma.killRenderer: The renderer is undefined.';
var a = this.renderersPerCamera[v.camera.id],
i = a.indexOf(v);
if (i >= 0)
a.splice(i, 1);
if (v.kill)
v.kill();
delete this.renderers[v.id];
return this;
};
/**
* This method calls the "render" method of each renderer, with the same
* arguments than the "render" method, but will also check if the renderer
* has a "process" method, and call it if it exists.
*
* It is useful for quadtrees or WebGL processing, for instance.
*
* @param {?object} options Eventually some options to give to the refresh
* method.
* @return {sigma} Returns the instance itself.
*
* Recognized parameters:
* **********************
* Here is the exhaustive list of every accepted parameters in the "options"
* object:
*
* {?boolean} skipIndexation A flag specifying wether or not the refresh
* function should reindex the graph in the
* quadtrees or not (default: false).
*/
sigma.prototype.refresh = function(options) {
var i,
l,
k,
a,
c,
bounds,
prefix = 0;
options = options || {};
// Call each middleware:
a = this.middlewares || [];
for (i = 0, l = a.length; i < l; i++)
a[i].call(
this,
(i === 0) ? '' : 'tmp' + prefix + ':',
(i === l - 1) ? 'ready:' : ('tmp' + (++prefix) + ':')
);
// Then, for each camera, call the "rescale" middleware, unless the
// settings specify not to:
for (k in this.cameras) {
c = this.cameras[k];
if (
c.settings('autoRescale') &&
this.renderersPerCamera[c.id] &&
this.renderersPerCamera[c.id].length
)
sigma.middlewares.rescale.call(
this,
a.length ? 'ready:' : '',
c.readPrefix,
{
width: this.renderersPerCamera[c.id][0].width,
height: this.renderersPerCamera[c.id][0].height
}
);
else
sigma.middlewares.copy.call(
this,
a.length ? 'ready:' : '',
c.readPrefix
);
if (!options.skipIndexation) {
// Find graph boundaries:
bounds = sigma.utils.getBoundaries(
this.graph,
c.readPrefix
);
// Refresh quadtree:
c.quadtree.index(this.graph.nodes(), {
prefix: c.readPrefix,
bounds: {
x: bounds.minX,
y: bounds.minY,
width: bounds.maxX - bounds.minX,
height: bounds.maxY - bounds.minY
}
});
// Refresh edgequadtree:
if (
c.edgequadtree !== undefined &&
c.settings('drawEdges') &&
c.settings('enableEdgeHovering')
) {
c.edgequadtree.index(this.graph, {
prefix: c.readPrefix,
bounds: {
x: bounds.minX,
y: bounds.minY,
width: bounds.maxX - bounds.minX,
height: bounds.maxY - bounds.minY
}
});
}
}
}
// Call each renderer:
a = Object.keys(this.renderers);
for (i = 0, l = a.length; i < l; i++)
if (this.renderers[a[i]].process) {
if (this.settings('skipErrors'))
try {
this.renderers[a[i]].process();
} catch (e) {
console.log(
'Warning: The renderer "' + a[i] + '" crashed on ".process()"'
);
}
else
this.renderers[a[i]].process();
}
this.render();
return this;
};
/**
* This method calls the "render" method of each renderer.
*
* @return {sigma} Returns the instance itself.
*/
sigma.prototype.render = function() {
var i,
l,
a,
prefix = 0;
// Call each renderer:
a = Object.keys(this.renderers);
for (i = 0, l = a.length; i < l; i++)
if (this.settings('skipErrors'))
try {
this.renderers[a[i]].render();
} catch (e) {
if (this.settings('verbose'))
console.log(
'Warning: The renderer "' + a[i] + '" crashed on ".render()"'
);
}
else
this.renderers[a[i]].render();
return this;
};
/**
* This method calls the "render" method of each renderer that is bound to
* the specified camera. To improve the performances, if this method is
* called too often, the number of effective renderings is limitated to one
* per frame, unless you are using the "force" flag.
*
* @param {sigma.classes.camera} camera The camera to render.
* @param {?boolean} force If true, will render the camera
* directly.
* @return {sigma} Returns the instance itself.
*/
sigma.prototype.renderCamera = function(camera, force) {
var i,
l,
a,
self = this;
if (force) {
a = this.renderersPerCamera[camera.id];
for (i = 0, l = a.length; i < l; i++)
if (this.settings('skipErrors'))
try {
a[i].render();
} catch (e) {
if (this.settings('verbose'))
console.log(
'Warning: The renderer "' + a[i].id + '" crashed on ".render()"'
);
}
else
a[i].render();
} else {
if (!this.cameraFrames[camera.id]) {
a = this.renderersPerCamera[camera.id];
for (i = 0, l = a.length; i < l; i++)
if (this.settings('skipErrors'))
try {
a[i].render();
} catch (e) {
if (this.settings('verbose'))
console.log(
'Warning: The renderer "' +
a[i].id +
'" crashed on ".render()"'
);
}
else
a[i].render();
this.cameraFrames[camera.id] = requestAnimationFrame(function() {
delete self.cameraFrames[camera.id];
});
}
}
return this;
};
/**
* This method calls the "kill" method of each module and destroys any
* reference from the instance.
*/
sigma.prototype.kill = function() {
var k;
// Dispatching event
this.dispatchEvent('kill');
// Kill graph:
this.graph.kill();
// Kill middlewares:
delete this.middlewares;
// Kill each renderer:
for (k in this.renderers)
this.killRenderer(this.renderers[k]);
// Kill each camera:
for (k in this.cameras)
this.killCamera(this.cameras[k]);
delete this.renderers;
delete this.cameras;
// Kill everything else:
for (k in this)
if (this.hasOwnProperty(k))
delete this[k];
delete __instances[this.id];
};
/**
* Returns a clone of the instances object or a specific running instance.
*
* @param {?string} id Eventually an instance ID.
* @return {object} The related instance or a clone of the instances
* object.
*/
sigma.instances = function(id) {
return arguments.length ?
__instances[id] :
sigma.utils.extend({}, __instances);
};
/**
* The current version of sigma:
*/
sigma.version = '1.2.0';
/**
* EXPORT:
* *******
*/
if (typeof this.sigma !== 'undefined')
throw 'An object called sigma is already in the global scope.';
this.sigma = sigma;
}).call(this);
/**
* conrad.js is a tiny JavaScript jobs scheduler,
*
* Version: 0.1.0
* Sources: http://github.com/jacomyal/conrad.js
* Doc: http://github.com/jacomyal/conrad.js#readme
*
* License:
* --------
* Copyright © 2013 Alexis Jacomy, Sciences-Po médialab
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising
* from, out of or in connection with the software or the use or other dealings
* in the Software.
*/
(function(global) {
'use strict';
// Check that conrad.js has not been loaded yet:
if (global.conrad)
throw new Error('conrad already exists');
/**
* PRIVATE VARIABLES:
* ******************
*/
/**
* A flag indicating whether conrad is running or not.
*
* @type {Number}
*/
var _lastFrameTime;
/**
* A flag indicating whether conrad is running or not.
*
* @type {Boolean}
*/
var _isRunning = false;
/**
* The hash of registered jobs. Each job must at least have a unique ID
* under the key "id" and a function under the key "job". This hash
* contains each running job and each waiting job.
*
* @type {Object}
*/
var _jobs = {};
/**
* The hash of currently running jobs.
*
* @type {Object}
*/
var _runningJobs = {};
/**
* The array of currently running jobs, sorted by priority.
*
* @type {Array}
*/
var _sortedByPriorityJobs = [];
/**
* The array of currently waiting jobs.
*
* @type {Object}
*/
var _waitingJobs = {};
/**
* The array of finished jobs. They are stored in an array, since two jobs
* with the same "id" can happen at two different times.
*
* @type {Array}
*/
var _doneJobs = [];
/**
* A dirty flag to keep conrad from starting: Indeed, when addJob() is called
* with several jobs, conrad must be started only at the end. This flag keeps
* me from duplicating the code that effectively adds a job.
*
* @type {Boolean}
*/
var _noStart = false;
/**
* An hash containing some global settings about how conrad.js should
* behave.
*
* @type {Object}
*/
var _parameters = {
frameDuration: 20,
history: true
};
/**
* This object contains every handlers bound to conrad events. It does not
* requirea any DOM implementation, since the events are all JavaScript.
*
* @type {Object}
*/
var _handlers = Object.create(null);
/**
* PRIVATE FUNCTIONS:
* ******************
*/
/**
* Will execute the handler everytime that the indicated event (or the
* indicated events) will be triggered.
*
* @param {string|array|object} events The name of the event (or the events
* separated by spaces).
* @param {function(Object)} handler The handler to bind.
* @return {Object} Returns conrad.
*/
function _bind(events, handler) {
var i,
i_end,
event,
eArray;
if (!arguments.length)
return;
else if (
arguments.length === 1 &&
Object(arguments[0]) === arguments[0]
)
for (events in arguments[0])
_bind(events, arguments[0][events]);
else if (arguments.length > 1) {
eArray =
Array.isArray(events) ?
events :
events.split(/ /);
for (i = 0, i_end = eArray.length; i !== i_end; i += 1) {
event = eArray[i];
if (!_handlers[event])
_handlers[event] = [];
// Using an object instead of directly the handler will make possible
// later to add flags
_handlers[event].push({
handler: handler
});
}
}
}
/**
* Removes the handler from a specified event (or specified events).
*
* @param {?string} events The name of the event (or the events
* separated by spaces). If undefined,
* then all handlers are removed.
* @param {?function(Object)} handler The handler to unbind. If undefined,
* each handler bound to the event or the
* events will be removed.
* @return {Object} Returns conrad.
*/
function _unbind(events, handler) {
var i,
i_end,
j,
j_end,
a,
event,
eArray = Array.isArray(events) ?
events :
events.split(/ /);
if (!arguments.length)
_handlers = Object.create(null);
else if (handler) {
for (i = 0, i_end = eArray.length; i !== i_end; i += 1) {
event = eArray[i];
if (_handlers[event]) {
a = [];
for (j = 0, j_end = _handlers[event].length; j !== j_end; j += 1)
if (_handlers[event][j].handler !== handler)
a.push(_handlers[event][j]);
_handlers[event] = a;
}
if (_handlers[event] && _handlers[event].length === 0)
delete _handlers[event];
}
} else
for (i = 0, i_end = eArray.length; i !== i_end; i += 1)
delete _handlers[eArray[i]];
}
/**
* Executes each handler bound to the event.
*
* @param {string} events The name of the event (or the events separated
* by spaces).
* @param {?Object} data The content of the event (optional).
* @return {Object} Returns conrad.
*/
function _dispatch(events, data) {
var i,
j,
i_end,
j_end,
event,
eventName,
eArray = Array.isArray(events) ?
events :
events.split(/ /);
data = data === undefined ? {} : data;
for (i = 0, i_end = eArray.length; i !== i_end; i += 1) {
eventName = eArray[i];
if (_handlers[eventName]) {
event = {
type: eventName,
data: data || {}
};
for (j = 0, j_end = _handlers[eventName].length; j !== j_end; j += 1)
try {
_handlers[eventName][j].handler(event);
} catch (e) {}
}
}
}
/**
* Executes the most prioritary job once, and deals with filling the stats
* (done, time, averageTime, currentTime, etc...).
*
* @return {?Object} Returns the job object if it has to be killed, null else.
*/
function _executeFirstJob() {
var i,
l,
test,
kill,
pushed = false,
time = __dateNow(),
job = _sortedByPriorityJobs.shift();
// Execute the job and look at the result:
test = job.job();
// Deal with stats:
time = __dateNow() - time;
job.done++;
job.time += time;
job.currentTime += time;
job.weightTime = job.currentTime / (job.weight || 1);
job.averageTime = job.time / job.done;
// Check if the job has to be killed:
kill = job.count ? (job.count <= job.done) : !test;
// Reset priorities:
if (!kill) {
for (i = 0, l = _sortedByPriorityJobs.length; i < l; i++)
if (_sortedByPriorityJobs[i].weightTime > job.weightTime) {
_sortedByPriorityJobs.splice(i, 0, job);
pushed = true;
break;
}
if (!pushed)
_sortedByPriorityJobs.push(job);
}
return kill ? job : null;
}
/**
* Activates a job, by adding it to the _runningJobs object and the
* _sortedByPriorityJobs array. It also initializes its currentTime value.
*
* @param {Object} job The job to activate.
*/
function _activateJob(job) {
var l = _sortedByPriorityJobs.length;
// Add the job to the running jobs:
_runningJobs[job.id] = job;
job.status = 'running';
// Add the job to the priorities:
if (l) {
job.weightTime = _sortedByPriorityJobs[l - 1].weightTime;
job.currentTime = job.weightTime * (job.weight || 1);
}
// Initialize the job and dispatch:
job.startTime = __dateNow();
_dispatch('jobStarted', __clone(job));
_sortedByPriorityJobs.push(job);
}
/**
* The main loop of conrad.js:
* . It executes job such that they all occupate the same processing time.
* . It stops jobs that do not need to be executed anymore.
* . It triggers callbacks when it is relevant.
* . It starts waiting jobs when they need to be started.
* . It injects frames to keep a constant frapes per second ratio.
* . It stops itself when there are no more jobs to execute.
*/
function _loop() {
var k,
o,
l,
job,
time,
deadJob;
// Deal with the newly added jobs (the _jobs object):
for (k in _jobs) {
job = _jobs[k];
if (job.after)
_waitingJobs[k] = job;
else
_activateJob(job);
delete _jobs[k];
}
// Set the _isRunning flag to false if there are no running job:
_isRunning = !!_sortedByPriorityJobs.length;
// Deal with the running jobs (the _runningJobs object):
while (
_sortedByPriorityJobs.length &&
__dateNow() - _lastFrameTime < _parameters.frameDuration
) {
deadJob = _executeFirstJob();
// Deal with the case where the job has ended:
if (deadJob) {
_killJob(deadJob.id);
// Check for waiting jobs:
for (k in _waitingJobs)
if (_waitingJobs[k].after === deadJob.id) {
_activateJob(_waitingJobs[k]);
delete _waitingJobs[k];
}
}
}
// Check if conrad still has jobs to deal with, and kill it if not:
if (_isRunning) {
// Update the _lastFrameTime:
_lastFrameTime = __dateNow();
_dispatch('enterFrame');
setTimeout(_loop, 0);
} else
_dispatch('stop');
}
/**
* Adds one or more jobs, and starts the loop if no job was running before. A
* job is at least a unique string "id" and a function, and there are some
* parameters that you can specify for each job to modify the way conrad will
* execute it. If a job is added with the "id" of another job that is waiting
* or still running, an error will be thrown.
*
* When a job is added, it is referenced in the _jobs object, by its id.
* Then, if it has to be executed right now, it will be also referenced in
* the _runningJobs object. If it has to wait, then it will be added into the
* _waitingJobs object, until it can start.
*
* Keep reading this documentation to see how to call this method.
*
* @return {Object} Returns conrad.
*
* Adding one job:
* ***************
* Basically, a job is defined by its string id and a function (the job). It
* is also possible to add some parameters:
*
* > conrad.addJob('myJobId', myJobFunction);
* > conrad.addJob('myJobId', {
* > job: myJobFunction,
* > someParameter: someValue
* > });
* > conrad.addJob({
* > id: 'myJobId',
* > job: myJobFunction,
* > someParameter: someValue
* > });
*
* Adding several jobs:
* ********************
* When adding several jobs at the same time, it is possible to specify
* parameters for each one individually or for all:
*
* > conrad.addJob([
* > {
* > id: 'myJobId1',
* > job: myJobFunction1,
* > someParameter1: someValue1
* > },
* > {
* > id: 'myJobId2',
* > job: myJobFunction2,
* > someParameter2: someValue2
* > }
* > ], {
* > someCommonParameter: someCommonValue
* > });
* > conrad.addJob({
* > myJobId1: {,
* > job: myJobFunction1,
* > someParameter1: someValue1
* > },
* > myJobId2: {,
* > job: myJobFunction2,
* > someParameter2: someValue2
* > }
* > }, {
* > someCommonParameter: someCommonValue
* > });
* > conrad.addJob({
* > myJobId1: myJobFunction1,
* > myJobId2: myJobFunction2
* > }, {
* > someCommonParameter: someCommonValue
* > });
*
* Recognized parameters:
* **********************
* Here is the exhaustive list of every accepted parameters:
*
* {?Function} end A callback to execute when the job is ended. It is
* not executed if the job is killed instead of ended
* "naturally".
* {?Integer} count The number of time the job has to be executed.
* {?Number} weight If specified, the job will be executed as it was
* added "weight" times.
* {?String} after The id of another job (eventually not added yet).
* If specified, this job will start only when the
* specified "after" job is ended.
*/
function _addJob(v1, v2) {
var i,
l,
o;
// Array of jobs:
if (Array.isArray(v1)) {
// Keep conrad to start until the last job is added:
_noStart = true;
for (i = 0, l = v1.length; i < l; i++)
_addJob(v1[i].id, __extend(v1[i], v2));
_noStart = false;
if (!_isRunning) {
// Update the _lastFrameTime:
_lastFrameTime = __dateNow();
_dispatch('start');
_loop();
}
} else if (typeof v1 === 'object') {
// One job (object):
if (typeof v1.id === 'string')
_addJob(v1.id, v1);
// Hash of jobs:
else {
// Keep conrad to start until the last job is added:
_noStart = true;
for (i in v1)
if (typeof v1[i] === 'function')
_addJob(i, __extend({
job: v1[i]
}, v2));
else
_addJob(i, __extend(v1[i], v2));
_noStart = false;
if (!_isRunning) {
// Update the _lastFrameTime:
_lastFrameTime = __dateNow();
_dispatch('start');
_loop();
}
}
// One job (string, *):
} else if (typeof v1 === 'string') {
if (_hasJob(v1))
throw new Error(
'[conrad.addJob] Job with id "' + v1 + '" already exists.'
);
// One job (string, function):
if (typeof v2 === 'function') {
o = {
id: v1,
done: 0,
time: 0,
status: 'waiting',
currentTime: 0,
averageTime: 0,
weightTime: 0,
job: v2
};
// One job (string, object):
} else if (typeof v2 === 'object') {
o = __extend(
{
id: v1,
done: 0,
time: 0,
status: 'waiting',
currentTime: 0,
averageTime: 0,
weightTime: 0
},
v2
);
// If none of those cases, throw an error:
} else
throw new Error('[conrad.addJob] Wrong arguments.');
// Effectively add the job:
_jobs[v1] = o;
_dispatch('jobAdded', __clone(o));
// Check if the loop has to be started:
if (!_isRunning && !_noStart) {
// Update the _lastFrameTime:
_lastFrameTime = __dateNow();
_dispatch('start');
_loop();
}
// If none of those cases, throw an error:
} else
throw new Error('[conrad.addJob] Wrong arguments.');
return this;
}
/**
* Kills one or more jobs, indicated by their ids. It is only possible to
* kill running jobs or waiting jobs. If you try to kill a job that does not
* exist or that is already killed, a warning will be thrown.
*
* @param {Array|String} v1 A string job id or an array of job ids.
* @return {Object} Returns conrad.
*/
function _killJob(v1) {
var i,
l,
k,
a,
job,
found = false;
// Array of job ids:
if (Array.isArray(v1))
for (i = 0, l = v1.length; i < l; i++)
_killJob(v1[i]);
// One job's id:
else if (typeof v1 === 'string') {
a = [_runningJobs, _waitingJobs, _jobs];
// Remove the job from the hashes:
for (i = 0, l = a.length; i < l; i++)
if (v1 in a[i]) {
job = a[i][v1];
if (_parameters.history) {
job.status = 'done';
_doneJobs.push(job);
}
_dispatch('jobEnded', __clone(job));
delete a[i][v1];
if (typeof job.end === 'function')
job.end();
found = true;
}
// Remove the priorities array:
a = _sortedByPriorityJobs;
for (i = 0, l = a.length; i < l; i++)
if (a[i].id === v1) {
a.splice(i, 1);
break;
}
if (!found)
throw new Error('[conrad.killJob] Job "' + v1 + '" not found.');
// If none of those cases, throw an error:
} else
throw new Error('[conrad.killJob] Wrong arguments.');
return this;
}
/**
* Kills every running, waiting, and just added jobs.
*
* @return {Object} Returns conrad.
*/
function _killAll() {
var k,
jobs = __extend(_jobs, _runningJobs, _waitingJobs);
// Take every jobs and push them into the _doneJobs object:
if (_parameters.history)
for (k in jobs) {
jobs[k].status = 'done';
_doneJobs.push(jobs[k]);
if (typeof jobs[k].end === 'function')
jobs[k].end();
}
// Reinitialize the different jobs lists:
_jobs = {};
_waitingJobs = {};
_runningJobs = {};
_sortedByPriorityJobs = [];
// In case some jobs are added right after the kill:
_isRunning = false;
return this;
}
/**
* Returns true if a job with the specified id is currently running or
* waiting, and false else.
*
* @param {String} id The id of the job.
* @return {?Object} Returns the job object if it exists.
*/
function _hasJob(id) {
var job = _jobs[id] || _runningJobs[id] || _waitingJobs[id];
return job ? __extend(job) : null;
}
/**
* This method will set the setting specified by "v1" to the value specified
* by "v2" if both are given, and else return the current value of the
* settings "v1".
*
* @param {String} v1 The name of the property.
* @param {?*} v2 Eventually, a value to set to the specified
* property.
* @return {Object|*} Returns the specified settings value if "v2" is not
* given, and conrad else.
*/
function _settings(v1, v2) {
var o;
if (typeof a1 === 'string' && arguments.length === 1)
return _parameters[a1];
else {
o = (typeof a1 === 'object' && arguments.length === 1) ?
a1 || {} :
{};
if (typeof a1 === 'string')
o[a1] = a2;
for (var k in o)
if (o[k] !== undefined)
_parameters[k] = o[k];
else
delete _parameters[k];
return this;
}
}
/**
* Returns true if conrad is currently running, and false else.
*
* @return {Boolean} Returns _isRunning.
*/
function _getIsRunning() {
return _isRunning;
}
/**
* Unreference every job that is stored in the _doneJobs object. It will
* not be possible anymore to get stats about these jobs, but it will release
* the memory.
*
* @return {Object} Returns conrad.
*/
function _clearHistory() {
_doneJobs = [];
return this;
}
/**
* Returns a snapshot of every data about jobs that wait to be started, are
* currently running or are done.
*
* It is possible to get only running, waiting or done jobs by giving
* "running", "waiting" or "done" as fist argument.
*
* It is also possible to get every job with a specified id by giving it as
* first argument. Also, using a RegExp instead of an id will return every
* jobs whose ids match the RegExp. And these two last use cases work as well
* by giving before "running", "waiting" or "done".
*
* @return {Array} The array of the matching jobs.
*
* Some call examples:
* *******************
* > conrad.getStats('running')
* > conrad.getStats('waiting')
* > conrad.getStats('done')
* > conrad.getStats('myJob')
* > conrad.getStats(/test/)
* > conrad.getStats('running', 'myRunningJob')
* > conrad.getStats('running', /test/)
*/
function _getStats(v1, v2) {
var a,
k,
i,
l,
stats,
pattern,
isPatternString;
if (!arguments.length) {
stats = [];
for (k in _jobs)
stats.push(_jobs[k]);
for (k in _waitingJobs)
stats.push(_waitingJobs[k]);
for (k in _runningJobs)
stats.push(_runningJobs[k]);
stats = stats.concat(_doneJobs);
}
if (typeof v1 === 'string')
switch (v1) {
case 'waiting':
stats = __objectValues(_waitingJobs);
break;
case 'running':
stats = __objectValues(_runningJobs);
break;
case 'done':
stats = _doneJobs;
break;
default:
pattern = v1;
}
if (v1 instanceof RegExp)
pattern = v1;
if (!pattern && (typeof v2 === 'string' || v2 instanceof RegExp))
pattern = v2;
// Filter jobs if a pattern is given:
if (pattern) {
isPatternString = typeof pattern === 'string';
if (stats instanceof Array) {
a = stats;
} else if (typeof stats === 'object') {
a = [];
for (k in stats)
a = a.concat(stats[k]);
} else {
a = [];
for (k in _jobs)
a.push(_jobs[k]);
for (k in _waitingJobs)
a.push(_waitingJobs[k]);
for (k in _runningJobs)
a.push(_runningJobs[k]);
a = a.concat(_doneJobs);
}
stats = [];
for (i = 0, l = a.length; i < l; i++)
if (isPatternString ? a[i].id === pattern : a[i].id.match(pattern))
stats.push(a[i]);
}
return __clone(stats);
}
/**
* TOOLS FUNCTIONS:
* ****************
*/
/**
* This function takes any number of objects as arguments, copies from each
* of these objects each pair key/value into a new object, and finally
* returns this object.
*
* The arguments are parsed from the last one to the first one, such that
* when two objects have keys in common, the "earliest" object wins.
*
* Example:
* ********
* > var o1 = {
* > a: 1,
* > b: 2,
* > c: '3'
* > },
* > o2 = {
* > c: '4',
* > d: [ 5 ]
* > };
* > __extend(o1, o2);
* > // Returns: {
* > // a: 1,
* > // b: 2,
* > // c: '3',
* > // d: [ 5 ]
* > // };
*
* @param {Object+} Any number of objects.
* @return {Object} The merged object.
*/
function __extend() {
var i,
k,
res = {},
l = arguments.length;
for (i = l - 1; i >= 0; i--)
for (k in arguments[i])
res[k] = arguments[i][k];
return res;
}
/**
* This function simply clones an object. This object must contain only
* objects, arrays and immutable values. Since it is not public, it does not
* deal with cyclic references, DOM elements and instantiated objects - so
* use it carefully.
*
* @param {Object} The object to clone.
* @return {Object} The clone.
*/
function __clone(item) {
var result, i, k, l;
if (!item)
return item;
if (Array.isArray(item)) {
result = [];
for (i = 0, l = item.length; i < l; i++)
result.push(__clone(item[i]));
} else if (typeof item === 'object') {
result = {};
for (i in item)
result[i] = __clone(item[i]);
} else
result = item;
return result;
}
/**
* Returns an array containing the values of an object.
*
* @param {Object} The object.
* @return {Array} The array of values.
*/
function __objectValues(o) {
var k,
a = [];
for (k in o)
a.push(o[k]);
return a;
}
/**
* A short "Date.now()" polyfill.
*
* @return {Number} The current time (in ms).
*/
function __dateNow() {
return Date.now ? Date.now() : new Date().getTime();
}
/**
* Polyfill for the Array.isArray function:
*/
if (!Array.isArray)
Array.isArray = function(v) {
return Object.prototype.toString.call(v) === '[object Array]';
};
/**
* EXPORT PUBLIC API:
* ******************
*/
var conrad = {
hasJob: _hasJob,
addJob: _addJob,
killJob: _killJob,
killAll: _killAll,
settings: _settings,
getStats: _getStats,
isRunning: _getIsRunning,
clearHistory: _clearHistory,
// Events management:
bind: _bind,
unbind: _unbind,
// Version:
version: '0.1.0'
};
if (typeof exports !== 'undefined') {
if (typeof module !== 'undefined' && module.exports)
exports = module.exports = conrad;
exports.conrad = conrad;
}
global.conrad = conrad;
})(this);
// Hardcoded export for the node.js version:
var sigma = this.sigma,
conrad = this.conrad;
sigma.conrad = conrad;
// Dirty polyfills to permit sigma usage in node
if (typeof HTMLElement === 'undefined')
HTMLElement = function() {};
if (typeof window === 'undefined')
window = {
addEventListener: function() {}
};
if (typeof exports !== 'undefined') {
if (typeof module !== 'undefined' && module.exports)
exports = module.exports = sigma;
exports.sigma = sigma;
}
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
var _root = this;
// Initialize packages:
sigma.utils = sigma.utils || {};
/**
* MISC UTILS:
*/
/**
* This function takes any number of objects as arguments, copies from each
* of these objects each pair key/value into a new object, and finally
* returns this object.
*
* The arguments are parsed from the last one to the first one, such that
* when several objects have keys in common, the "earliest" object wins.
*
* Example:
* ********
* > var o1 = {
* > a: 1,
* > b: 2,
* > c: '3'
* > },
* > o2 = {
* > c: '4',
* > d: [ 5 ]
* > };
* > sigma.utils.extend(o1, o2);
* > // Returns: {
* > // a: 1,
* > // b: 2,
* > // c: '3',
* > // d: [ 5 ]
* > // };
*
* @param {object+} Any number of objects.
* @return {object} The merged object.
*/
sigma.utils.extend = function() {
var i,
k,
res = {},
l = arguments.length;
for (i = l - 1; i >= 0; i--)
for (k in arguments[i])
res[k] = arguments[i][k];
return res;
};
/**
* A short "Date.now()" polyfill.
*
* @return {Number} The current time (in ms).
*/
sigma.utils.dateNow = function() {
return Date.now ? Date.now() : new Date().getTime();
};
/**
* Takes a package name as parameter and checks at each lebel if it exists,
* and if it does not, creates it.
*
* Example:
* ********
* > sigma.utils.pkg('a.b.c');
* > a.b.c;
* > // Object {};
* >
* > sigma.utils.pkg('a.b.d');
* > a.b;
* > // Object { c: {}, d: {} };
*
* @param {string} pkgName The name of the package to create/find.
* @return {object} The related package.
*/
sigma.utils.pkg = function(pkgName) {
return (pkgName || '').split('.').reduce(function(context, objName) {
return (objName in context) ?
context[objName] :
(context[objName] = {});
}, _root);
};
/**
* Returns a unique incremental number ID.
*
* Example:
* ********
* > sigma.utils.id();
* > // 1;
* >
* > sigma.utils.id();
* > // 2;
* >
* > sigma.utils.id();
* > // 3;
*
* @param {string} pkgName The name of the package to create/find.
* @return {object} The related package.
*/
sigma.utils.id = (function() {
var i = 0;
return function() {
return ++i;
};
})();
/**
* This function takes an hexa color (for instance "#ffcc00" or "#fc0") or a
* rgb / rgba color (like "rgb(255,255,12)" or "rgba(255,255,12,1)") and
* returns an integer equal to "r * 255 * 255 + g * 255 + b", to gain some
* memory in the data given to WebGL shaders.
*
* Note that the function actually caches its results for better performance.
*
* @param {string} val The hexa or rgba color.
* @return {number} The number value.
*/
var floatColorCache = {};
sigma.utils.floatColor = function(val) {
// Is the color already computed?
if (floatColorCache[val])
return floatColorCache[val];
var original = val,
r = 0,
g = 0,
b = 0;
if (val[0] === '#') {
val = val.slice(1);
if (val.length === 3) {
r = parseInt(val.charAt(0) + val.charAt(0), 16);
g = parseInt(val.charAt(1) + val.charAt(1), 16);
b = parseInt(val.charAt(2) + val.charAt(2), 16);
}
else {
r = parseInt(val.charAt(0) + val.charAt(1), 16);
g = parseInt(val.charAt(2) + val.charAt(3), 16);
b = parseInt(val.charAt(4) + val.charAt(5), 16);
}
} else if (val.match(/^ *rgba? *\(/)) {
val = val.match(
/^ *rgba? *\( *([0-9]*) *, *([0-9]*) *, *([0-9]*) *(,.*)?\) *$/
);
r = +val[1];
g = +val[2];
b = +val[3];
}
var color = (
r * 256 * 256 +
g * 256 +
b
);
// Caching the color
floatColorCache[original] = color;
return color;
};
/**
* Perform a zoom into a camera, with or without animation, to the
* coordinates indicated using a specified ratio.
*
* Recognized parameters:
* **********************
* Here is the exhaustive list of every accepted parameters in the animation
* object:
*
* {?number} duration An amount of time that means the duration of the
* animation. If this parameter doesn't exist the
* zoom will be performed without animation.
* {?function} onComplete A function to perform it after the animation. It
* will be performed even if there is no duration.
*
* @param {camera} The camera where perform the zoom.
* @param {x} The X coordiantion where the zoom goes.
* @param {y} The Y coordiantion where the zoom goes.
* @param {ratio} The ratio to apply it to the current camera ratio.
* @param {?animation} A dictionary with options for a possible animation.
*/
sigma.utils.zoomTo = function(camera, x, y, ratio, animation) {
var settings = camera.settings,
count,
newRatio,
animationSettings,
coordinates;
// Create the newRatio dealing with min / max:
newRatio = Math.max(
settings('zoomMin'),
Math.min(
settings('zoomMax'),
camera.ratio * ratio
)
);
// Check that the new ratio is different from the initial one:
if (newRatio !== camera.ratio) {
// Create the coordinates variable:
ratio = newRatio / camera.ratio;
coordinates = {
x: x * (1 - ratio) + camera.x,
y: y * (1 - ratio) + camera.y,
ratio: newRatio
};
if (animation && animation.duration) {
// Complete the animation setings:
count = sigma.misc.animation.killAll(camera);
animation = sigma.utils.extend(
animation,
{
easing: count ? 'quadraticOut' : 'quadraticInOut'
}
);
sigma.misc.animation.camera(camera, coordinates, animation);
} else {
camera.goTo(coordinates);
if (animation && animation.onComplete)
animation.onComplete();
}
}
};
/**
* Return the control point coordinates for a quadratic bezier curve.
*
* @param {number} x1 The X coordinate of the start point.
* @param {number} y1 The Y coordinate of the start point.
* @param {number} x2 The X coordinate of the end point.
* @param {number} y2 The Y coordinate of the end point.
* @return {x,y} The control point coordinates.
*/
sigma.utils.getQuadraticControlPoint = function(x1, y1, x2, y2) {
return {
x: (x1 + x2) / 2 + (y2 - y1) / 4,
y: (y1 + y2) / 2 + (x1 - x2) / 4
};
};
/**
* Compute the coordinates of the point positioned
* at length t in the quadratic bezier curve.
*
* @param {number} t In [0,1] the step percentage to reach
* the point in the curve from the context point.
* @param {number} x1 The X coordinate of the context point.
* @param {number} y1 The Y coordinate of the context point.
* @param {number} x2 The X coordinate of the ending point.
* @param {number} y2 The Y coordinate of the ending point.
* @param {number} xi The X coordinate of the control point.
* @param {number} yi The Y coordinate of the control point.
* @return {object} {x,y}.
*/
sigma.utils.getPointOnQuadraticCurve = function(t, x1, y1, x2, y2, xi, yi) {
// http://stackoverflow.com/a/5634528
return {
x: Math.pow(1 - t, 2) * x1 + 2 * (1 - t) * t * xi + Math.pow(t, 2) * x2,
y: Math.pow(1 - t, 2) * y1 + 2 * (1 - t) * t * yi + Math.pow(t, 2) * y2
};
};
/**
* Compute the coordinates of the point positioned
* at length t in the cubic bezier curve.
*
* @param {number} t In [0,1] the step percentage to reach
* the point in the curve from the context point.
* @param {number} x1 The X coordinate of the context point.
* @param {number} y1 The Y coordinate of the context point.
* @param {number} x2 The X coordinate of the end point.
* @param {number} y2 The Y coordinate of the end point.
* @param {number} cx The X coordinate of the first control point.
* @param {number} cy The Y coordinate of the first control point.
* @param {number} dx The X coordinate of the second control point.
* @param {number} dy The Y coordinate of the second control point.
* @return {object} {x,y} The point at t.
*/
sigma.utils.getPointOnBezierCurve =
function(t, x1, y1, x2, y2, cx, cy, dx, dy) {
// http://stackoverflow.com/a/15397596
// Blending functions:
var B0_t = Math.pow(1 - t, 3),
B1_t = 3 * t * Math.pow(1 - t, 2),
B2_t = 3 * Math.pow(t, 2) * (1 - t),
B3_t = Math.pow(t, 3);
return {
x: (B0_t * x1) + (B1_t * cx) + (B2_t * dx) + (B3_t * x2),
y: (B0_t * y1) + (B1_t * cy) + (B2_t * dy) + (B3_t * y2)
};
};
/**
* Return the coordinates of the two control points for a self loop (i.e.
* where the start point is also the end point) computed as a cubic bezier
* curve.
*
* @param {number} x The X coordinate of the node.
* @param {number} y The Y coordinate of the node.
* @param {number} size The node size.
* @return {x1,y1,x2,y2} The coordinates of the two control points.
*/
sigma.utils.getSelfLoopControlPoints = function(x , y, size) {
return {
x1: x - size * 7,
y1: y,
x2: x,
y2: y + size * 7
};
};
/**
* Return the euclidian distance between two points of a plane
* with an orthonormal basis.
*
* @param {number} x1 The X coordinate of the first point.
* @param {number} y1 The Y coordinate of the first point.
* @param {number} x2 The X coordinate of the second point.
* @param {number} y2 The Y coordinate of the second point.
* @return {number} The euclidian distance.
*/
sigma.utils.getDistance = function(x0, y0, x1, y1) {
return Math.sqrt(Math.pow(x1 - x0, 2) + Math.pow(y1 - y0, 2));
};
/**
* Return the coordinates of the intersection points of two circles.
*
* @param {number} x0 The X coordinate of center location of the first
* circle.
* @param {number} y0 The Y coordinate of center location of the first
* circle.
* @param {number} r0 The radius of the first circle.
* @param {number} x1 The X coordinate of center location of the second
* circle.
* @param {number} y1 The Y coordinate of center location of the second
* circle.
* @param {number} r1 The radius of the second circle.
* @return {xi,yi} The coordinates of the intersection points.
*/
sigma.utils.getCircleIntersection = function(x0, y0, r0, x1, y1, r1) {
// http://stackoverflow.com/a/12219802
var a, dx, dy, d, h, rx, ry, x2, y2;
// dx and dy are the vertical and horizontal distances between the circle
// centers:
dx = x1 - x0;
dy = y1 - y0;
// Determine the straight-line distance between the centers:
d = Math.sqrt((dy * dy) + (dx * dx));
// Check for solvability:
if (d > (r0 + r1)) {
// No solution. circles do not intersect.
return false;
}
if (d < Math.abs(r0 - r1)) {
// No solution. one circle is contained in the other.
return false;
}
//'point 2' is the point where the line through the circle intersection
// points crosses the line between the circle centers.
// Determine the distance from point 0 to point 2:
a = ((r0 * r0) - (r1 * r1) + (d * d)) / (2.0 * d);
// Determine the coordinates of point 2:
x2 = x0 + (dx * a / d);
y2 = y0 + (dy * a / d);
// Determine the distance from point 2 to either of the intersection
// points:
h = Math.sqrt((r0 * r0) - (a * a));
// Determine the offsets of the intersection points from point 2:
rx = -dy * (h / d);
ry = dx * (h / d);
// Determine the absolute intersection points:
var xi = x2 + rx;
var xi_prime = x2 - rx;
var yi = y2 + ry;
var yi_prime = y2 - ry;
return {xi: xi, xi_prime: xi_prime, yi: yi, yi_prime: yi_prime};
};
/**
* Check if a point is on a line segment.
*
* @param {number} x The X coordinate of the point to check.
* @param {number} y The Y coordinate of the point to check.
* @param {number} x1 The X coordinate of the line start point.
* @param {number} y1 The Y coordinate of the line start point.
* @param {number} x2 The X coordinate of the line end point.
* @param {number} y2 The Y coordinate of the line end point.
* @param {number} epsilon The precision (consider the line thickness).
* @return {boolean} True if point is "close to" the line
* segment, false otherwise.
*/
sigma.utils.isPointOnSegment = function(x, y, x1, y1, x2, y2, epsilon) {
// http://stackoverflow.com/a/328122
var crossProduct = Math.abs((y - y1) * (x2 - x1) - (x - x1) * (y2 - y1)),
d = sigma.utils.getDistance(x1, y1, x2, y2),
nCrossProduct = crossProduct / d; // normalized cross product
return (nCrossProduct < epsilon &&
Math.min(x1, x2) <= x && x <= Math.max(x1, x2) &&
Math.min(y1, y2) <= y && y <= Math.max(y1, y2));
};
/**
* Check if a point is on a quadratic bezier curve segment with a thickness.
*
* @param {number} x The X coordinate of the point to check.
* @param {number} y The Y coordinate of the point to check.
* @param {number} x1 The X coordinate of the curve start point.
* @param {number} y1 The Y coordinate of the curve start point.
* @param {number} x2 The X coordinate of the curve end point.
* @param {number} y2 The Y coordinate of the curve end point.
* @param {number} cpx The X coordinate of the curve control point.
* @param {number} cpy The Y coordinate of the curve control point.
* @param {number} epsilon The precision (consider the line thickness).
* @return {boolean} True if (x,y) is on the curve segment,
* false otherwise.
*/
sigma.utils.isPointOnQuadraticCurve =
function(x, y, x1, y1, x2, y2, cpx, cpy, epsilon) {
// Fails if the point is too far from the extremities of the segment,
// preventing for more costly computation:
var dP1P2 = sigma.utils.getDistance(x1, y1, x2, y2);
if (Math.abs(x - x1) > dP1P2 || Math.abs(y - y1) > dP1P2) {
return false;
}
var dP1 = sigma.utils.getDistance(x, y, x1, y1),
dP2 = sigma.utils.getDistance(x, y, x2, y2),
t = 0.5,
r = (dP1 < dP2) ? -0.01 : 0.01,
rThreshold = 0.001,
i = 100,
pt = sigma.utils.getPointOnQuadraticCurve(t, x1, y1, x2, y2, cpx, cpy),
dt = sigma.utils.getDistance(x, y, pt.x, pt.y),
old_dt;
// This algorithm minimizes the distance from the point to the curve. It
// find the optimal t value where t=0 is the start point and t=1 is the end
// point of the curve, starting from t=0.5.
// It terminates because it runs a maximum of i interations.
while (i-- > 0 &&
t >= 0 && t <= 1 &&
(dt > epsilon) &&
(r > rThreshold || r < -rThreshold)) {
old_dt = dt;
pt = sigma.utils.getPointOnQuadraticCurve(t, x1, y1, x2, y2, cpx, cpy);
dt = sigma.utils.getDistance(x, y, pt.x, pt.y);
if (dt > old_dt) {
// not the right direction:
// halfstep in the opposite direction
r = -r / 2;
t += r;
}
else if (t + r < 0 || t + r > 1) {
// oops, we've gone too far:
// revert with a halfstep
r = r / 2;
dt = old_dt;
}
else {
// progress:
t += r;
}
}
return dt < epsilon;
};
/**
* Check if a point is on a cubic bezier curve segment with a thickness.
*
* @param {number} x The X coordinate of the point to check.
* @param {number} y The Y coordinate of the point to check.
* @param {number} x1 The X coordinate of the curve start point.
* @param {number} y1 The Y coordinate of the curve start point.
* @param {number} x2 The X coordinate of the curve end point.
* @param {number} y2 The Y coordinate of the curve end point.
* @param {number} cpx1 The X coordinate of the 1st curve control point.
* @param {number} cpy1 The Y coordinate of the 1st curve control point.
* @param {number} cpx2 The X coordinate of the 2nd curve control point.
* @param {number} cpy2 The Y coordinate of the 2nd curve control point.
* @param {number} epsilon The precision (consider the line thickness).
* @return {boolean} True if (x,y) is on the curve segment,
* false otherwise.
*/
sigma.utils.isPointOnBezierCurve =
function(x, y, x1, y1, x2, y2, cpx1, cpy1, cpx2, cpy2, epsilon) {
// Fails if the point is too far from the extremities of the segment,
// preventing for more costly computation:
var dP1CP1 = sigma.utils.getDistance(x1, y1, cpx1, cpy1);
if (Math.abs(x - x1) > dP1CP1 || Math.abs(y - y1) > dP1CP1) {
return false;
}
var dP1 = sigma.utils.getDistance(x, y, x1, y1),
dP2 = sigma.utils.getDistance(x, y, x2, y2),
t = 0.5,
r = (dP1 < dP2) ? -0.01 : 0.01,
rThreshold = 0.001,
i = 100,
pt = sigma.utils.getPointOnBezierCurve(
t, x1, y1, x2, y2, cpx1, cpy1, cpx2, cpy2),
dt = sigma.utils.getDistance(x, y, pt.x, pt.y),
old_dt;
// This algorithm minimizes the distance from the point to the curve. It
// find the optimal t value where t=0 is the start point and t=1 is the end
// point of the curve, starting from t=0.5.
// It terminates because it runs a maximum of i interations.
while (i-- > 0 &&
t >= 0 && t <= 1 &&
(dt > epsilon) &&
(r > rThreshold || r < -rThreshold)) {
old_dt = dt;
pt = sigma.utils.getPointOnBezierCurve(
t, x1, y1, x2, y2, cpx1, cpy1, cpx2, cpy2);
dt = sigma.utils.getDistance(x, y, pt.x, pt.y);
if (dt > old_dt) {
// not the right direction:
// halfstep in the opposite direction
r = -r / 2;
t += r;
}
else if (t + r < 0 || t + r > 1) {
// oops, we've gone too far:
// revert with a halfstep
r = r / 2;
dt = old_dt;
}
else {
// progress:
t += r;
}
}
return dt < epsilon;
};
/**
* ************
* EVENTS UTILS:
* ************
*/
/**
* Here are some useful functions to unify extraction of the information we
* need with mouse events and touch events, from different browsers:
*/
/**
* Extract the local X position from a mouse or touch event.
*
* @param {event} e A mouse or touch event.
* @return {number} The local X value of the mouse.
*/
sigma.utils.getX = function(e) {
return (
(e.offsetX !== undefined && e.offsetX) ||
(e.layerX !== undefined && e.layerX) ||
(e.clientX !== undefined && e.clientX)
);
};
/**
* Extract the local Y position from a mouse or touch event.
*
* @param {event} e A mouse or touch event.
* @return {number} The local Y value of the mouse.
*/
sigma.utils.getY = function(e) {
return (
(e.offsetY !== undefined && e.offsetY) ||
(e.layerY !== undefined && e.layerY) ||
(e.clientY !== undefined && e.clientY)
);
};
/**
* The pixel ratio of the screen. Taking zoom into account
*
* @return {number} Pixel ratio of the screen
*/
sigma.utils.getPixelRatio = function() {
var ratio = 1;
if (window.screen.deviceXDPI !== undefined &&
window.screen.logicalXDPI !== undefined &&
window.screen.deviceXDPI > window.screen.logicalXDPI) {
ratio = window.screen.systemXDPI / window.screen.logicalXDPI;
}
else if (window.devicePixelRatio !== undefined) {
ratio = window.devicePixelRatio;
}
return ratio;
};
/**
* Extract the width from a mouse or touch event.
*
* @param {event} e A mouse or touch event.
* @return {number} The width of the event's target.
*/
sigma.utils.getWidth = function(e) {
var w = (!e.target.ownerSVGElement) ?
e.target.width :
e.target.ownerSVGElement.width;
return (
(typeof w === 'number' && w) ||
(w !== undefined && w.baseVal !== undefined && w.baseVal.value)
);
};
/**
* Extract the center from a mouse or touch event.
*
* @param {event} e A mouse or touch event.
* @return {object} The center of the event's target.
*/
sigma.utils.getCenter = function(e) {
var ratio = e.target.namespaceURI.indexOf('svg') !== -1 ? 1 :
sigma.utils.getPixelRatio();
return {
x: sigma.utils.getWidth(e) / (2 * ratio),
y: sigma.utils.getHeight(e) / (2 * ratio)
};
};
/**
* Convert mouse coords to sigma coords
*
* @param {event} e A mouse or touch event.
* @param {number?} x The x coord to convert
* @param {number?} x The y coord to convert
*
* @return {object} The standardized event
*/
sigma.utils.mouseCoords = function(e, x, y) {
x = x || sigma.utils.getX(e);
y = y || sigma.utils.getY(e);
return {
x: x - sigma.utils.getCenter(e).x,
y: y - sigma.utils.getCenter(e).y,
clientX: e.clientX,
clientY: e.clientY,
ctrlKey: e.ctrlKey,
metaKey: e.metaKey,
altKey: e.altKey,
shiftKey: e.shiftKey
};
};
/**
* Extract the height from a mouse or touch event.
*
* @param {event} e A mouse or touch event.
* @return {number} The height of the event's target.
*/
sigma.utils.getHeight = function(e) {
var h = (!e.target.ownerSVGElement) ?
e.target.height :
e.target.ownerSVGElement.height;
return (
(typeof h === 'number' && h) ||
(h !== undefined && h.baseVal !== undefined && h.baseVal.value)
);
};
/**
* Extract the wheel delta from a mouse or touch event.
*
* @param {event} e A mouse or touch event.
* @return {number} The wheel delta of the mouse.
*/
sigma.utils.getDelta = function(e) {
return (
(e.wheelDelta !== undefined && e.wheelDelta) ||
(e.detail !== undefined && -e.detail)
);
};
/**
* Returns the offset of a DOM element.
*
* @param {DOMElement} dom The element to retrieve the position.
* @return {object} The offset of the DOM element (top, left).
*/
sigma.utils.getOffset = function(dom) {
var left = 0,
top = 0;
while (dom) {
top = top + parseInt(dom.offsetTop);
left = left + parseInt(dom.offsetLeft);
dom = dom.offsetParent;
}
return {
top: top,
left: left
};
};
/**
* Simulates a "double click" event.
*
* @param {HTMLElement} target The event target.
* @param {string} type The event type.
* @param {function} callback The callback to execute.
*/
sigma.utils.doubleClick = function(target, type, callback) {
var clicks = 0,
self = this,
handlers;
target._doubleClickHandler = target._doubleClickHandler || {};
target._doubleClickHandler[type] = target._doubleClickHandler[type] || [];
handlers = target._doubleClickHandler[type];
handlers.push(function(e) {
clicks++;
if (clicks === 2) {
clicks = 0;
return callback(e);
} else if (clicks === 1) {
setTimeout(function() {
clicks = 0;
}, sigma.settings.doubleClickTimeout);
}
});
target.addEventListener(type, handlers[handlers.length - 1], false);
};
/**
* Unbind simulated "double click" events.
*
* @param {HTMLElement} target The event target.
* @param {string} type The event type.
*/
sigma.utils.unbindDoubleClick = function(target, type) {
var handler,
handlers = (target._doubleClickHandler || {})[type] || [];
while ((handler = handlers.pop())) {
target.removeEventListener(type, handler);
}
delete (target._doubleClickHandler || {})[type];
};
/**
* Here are just some of the most basic easing functions, used for the
* animated camera "goTo" calls.
*
* If you need some more easings functions, don't hesitate to add them to
* sigma.utils.easings. But I will not add some more here or merge PRs
* containing, because I do not want sigma sources full of overkill and never
* used stuff...
*/
sigma.utils.easings = sigma.utils.easings || {};
sigma.utils.easings.linearNone = function(k) {
return k;
};
sigma.utils.easings.quadraticIn = function(k) {
return k * k;
};
sigma.utils.easings.quadraticOut = function(k) {
return k * (2 - k);
};
sigma.utils.easings.quadraticInOut = function(k) {
if ((k *= 2) < 1)
return 0.5 * k * k;
return - 0.5 * (--k * (k - 2) - 1);
};
sigma.utils.easings.cubicIn = function(k) {
return k * k * k;
};
sigma.utils.easings.cubicOut = function(k) {
return --k * k * k + 1;
};
sigma.utils.easings.cubicInOut = function(k) {
if ((k *= 2) < 1)
return 0.5 * k * k * k;
return 0.5 * ((k -= 2) * k * k + 2);
};
/**
* ************
* WEBGL UTILS:
* ************
*/
/**
* Loads a WebGL shader and returns it.
*
* @param {WebGLContext} gl The WebGLContext to use.
* @param {string} shaderSource The shader source.
* @param {number} shaderType The type of shader.
* @param {function(string): void} error Callback for errors.
* @return {WebGLShader} The created shader.
*/
sigma.utils.loadShader = function(gl, shaderSource, shaderType, error) {
var compiled,
shader = gl.createShader(shaderType);
// Load the shader source
gl.shaderSource(shader, shaderSource);
// Compile the shader
gl.compileShader(shader);
// Check the compile status
compiled = gl.getShaderParameter(shader, gl.COMPILE_STATUS);
// If something went wrong:
if (!compiled) {
if (error) {
error(
'Error compiling shader "' + shader + '":' +
gl.getShaderInfoLog(shader)
);
}
gl.deleteShader(shader);
return null;
}
return shader;
};
/**
* Creates a program, attaches shaders, binds attrib locations, links the
* program and calls useProgram.
*
* @param {Array.<WebGLShader>} shaders The shaders to attach.
* @param {Array.<string>} attribs The attribs names.
* @param {Array.<number>} locations The locations for the attribs.
* @param {function(string): void} error Callback for errors.
* @return {WebGLProgram} The created program.
*/
sigma.utils.loadProgram = function(gl, shaders, attribs, loc, error) {
var i,
linked,
program = gl.createProgram();
for (i = 0; i < shaders.length; ++i)
gl.attachShader(program, shaders[i]);
if (attribs)
for (i = 0; i < attribs.length; ++i)
gl.bindAttribLocation(
program,
locations ? locations[i] : i,
opt_attribs[i]
);
gl.linkProgram(program);
// Check the link status
linked = gl.getProgramParameter(program, gl.LINK_STATUS);
if (!linked) {
if (error)
error('Error in program linking: ' + gl.getProgramInfoLog(program));
gl.deleteProgram(program);
return null;
}
return program;
};
/**
* *********
* MATRICES:
* *********
* The following utils are just here to help generating the transformation
* matrices for the WebGL renderers.
*/
sigma.utils.pkg('sigma.utils.matrices');
/**
* The returns a 3x3 translation matrix.
*
* @param {number} dx The X translation.
* @param {number} dy The Y translation.
* @return {array} Returns the matrix.
*/
sigma.utils.matrices.translation = function(dx, dy) {
return [
1, 0, 0,
0, 1, 0,
dx, dy, 1
];
};
/**
* The returns a 3x3 or 2x2 rotation matrix.
*
* @param {number} angle The rotation angle.
* @param {boolean} m2 If true, the function will return a 2x2 matrix.
* @return {array} Returns the matrix.
*/
sigma.utils.matrices.rotation = function(angle, m2) {
var cos = Math.cos(angle),
sin = Math.sin(angle);
return m2 ? [
cos, -sin,
sin, cos
] : [
cos, -sin, 0,
sin, cos, 0,
0, 0, 1
];
};
/**
* The returns a 3x3 or 2x2 homothetic transformation matrix.
*
* @param {number} ratio The scaling ratio.
* @param {boolean} m2 If true, the function will return a 2x2 matrix.
* @return {array} Returns the matrix.
*/
sigma.utils.matrices.scale = function(ratio, m2) {
return m2 ? [
ratio, 0,
0, ratio
] : [
ratio, 0, 0,
0, ratio, 0,
0, 0, 1
];
};
/**
* The returns a 3x3 or 2x2 homothetic transformation matrix.
*
* @param {array} a The first matrix.
* @param {array} b The second matrix.
* @param {boolean} m2 If true, the function will assume both matrices are
* 2x2.
* @return {array} Returns the matrix.
*/
sigma.utils.matrices.multiply = function(a, b, m2) {
var l = m2 ? 2 : 3,
a00 = a[0 * l + 0],
a01 = a[0 * l + 1],
a02 = a[0 * l + 2],
a10 = a[1 * l + 0],
a11 = a[1 * l + 1],
a12 = a[1 * l + 2],
a20 = a[2 * l + 0],
a21 = a[2 * l + 1],
a22 = a[2 * l + 2],
b00 = b[0 * l + 0],
b01 = b[0 * l + 1],
b02 = b[0 * l + 2],
b10 = b[1 * l + 0],
b11 = b[1 * l + 1],
b12 = b[1 * l + 2],
b20 = b[2 * l + 0],
b21 = b[2 * l + 1],
b22 = b[2 * l + 2];
return m2 ? [
a00 * b00 + a01 * b10,
a00 * b01 + a01 * b11,
a10 * b00 + a11 * b10,
a10 * b01 + a11 * b11
] : [
a00 * b00 + a01 * b10 + a02 * b20,
a00 * b01 + a01 * b11 + a02 * b21,
a00 * b02 + a01 * b12 + a02 * b22,
a10 * b00 + a11 * b10 + a12 * b20,
a10 * b01 + a11 * b11 + a12 * b21,
a10 * b02 + a11 * b12 + a12 * b22,
a20 * b00 + a21 * b10 + a22 * b20,
a20 * b01 + a21 * b11 + a22 * b21,
a20 * b02 + a21 * b12 + a22 * b22
];
};
}).call(this);
;(function(global) {
'use strict';
/**
* http://paulirish.com/2011/requestanimationframe-for-smart-animating/
* http://my.opera.com/emoller/blog/2011/12/20/requestanimationframe-for-smart-er-animating
* requestAnimationFrame polyfill by Erik Möller.
* fixes from Paul Irish and Tino Zijdel
* MIT license
*/
var x,
lastTime = 0,
vendors = ['ms', 'moz', 'webkit', 'o'];
for (x = 0; x < vendors.length && !global.requestAnimationFrame; x++) {
global.requestAnimationFrame =
global[vendors[x] + 'RequestAnimationFrame'];
global.cancelAnimationFrame =
global[vendors[x] + 'CancelAnimationFrame'] ||
global[vendors[x] + 'CancelRequestAnimationFrame'];
}
if (!global.requestAnimationFrame)
global.requestAnimationFrame = function(callback, element) {
var currTime = new Date().getTime(),
timeToCall = Math.max(0, 16 - (currTime - lastTime)),
id = global.setTimeout(
function() {
callback(currTime + timeToCall);
},
timeToCall
);
lastTime = currTime + timeToCall;
return id;
};
if (!global.cancelAnimationFrame)
global.cancelAnimationFrame = function(id) {
clearTimeout(id);
};
/**
* Function.prototype.bind polyfill found on MDN.
* https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind#Compatibility
* Public domain
*/
if (!Function.prototype.bind)
Function.prototype.bind = function(oThis) {
if (typeof this !== 'function')
// Closest thing possible to the ECMAScript 5 internal IsCallable
// function:
throw new TypeError(
'Function.prototype.bind - what is trying to be bound is not callable'
);
var aArgs = Array.prototype.slice.call(arguments, 1),
fToBind = this,
fNOP,
fBound;
fNOP = function() {};
fBound = function() {
return fToBind.apply(
this instanceof fNOP && oThis ?
this :
oThis,
aArgs.concat(Array.prototype.slice.call(arguments))
);
};
fNOP.prototype = this.prototype;
fBound.prototype = new fNOP();
return fBound;
};
})(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Packages initialization:
sigma.utils.pkg('sigma.settings');
var settings = {
/**
* GRAPH SETTINGS:
* ***************
*/
// {boolean} Indicates if the data have to be cloned in methods to add
// nodes or edges.
clone: true,
// {boolean} Indicates if nodes "id" values and edges "id", "source" and
// "target" values must be set as immutable.
immutable: true,
// {boolean} Indicates if sigma can log its errors and warnings.
verbose: false,
/**
* RENDERERS SETTINGS:
* *******************
*/
// {string}
classPrefix: 'sigma',
// {string}
defaultNodeType: 'def',
// {string}
defaultEdgeType: 'def',
// {string}
defaultLabelColor: '#000',
// {string}
defaultEdgeColor: '#000',
// {string}
defaultNodeColor: '#000',
// {string}
defaultLabelSize: 14,
// {string} Indicates how to choose the edges color. Available values:
// "source", "target", "default"
edgeColor: 'source',
// {number} Defines the minimal edge's arrow display size.
minArrowSize: 0,
// {string}
font: 'arial',
// {string} Example: 'bold'
fontStyle: '',
// {string} Indicates how to choose the labels color. Available values:
// "node", "default"
labelColor: 'default',
// {string} Indicates how to choose the labels size. Available values:
// "fixed", "proportional"
labelSize: 'fixed',
// {string} The ratio between the font size of the label and the node size.
labelSizeRatio: 1,
// {number} The minimum size a node must have to see its label displayed.
labelThreshold: 8,
// {number} The oversampling factor used in WebGL renderer.
webglOversamplingRatio: 2,
// {number} The size of the border of hovered nodes.
borderSize: 0,
// {number} The default hovered node border's color.
defaultNodeBorderColor: '#000',
// {number} The hovered node's label font. If not specified, will heritate
// the "font" value.
hoverFont: '',
// {boolean} If true, then only one node can be hovered at a time.
singleHover: true,
// {string} Example: 'bold'
hoverFontStyle: '',
// {string} Indicates how to choose the hovered nodes shadow color.
// Available values: "node", "default"
labelHoverShadow: 'default',
// {string}
labelHoverShadowColor: '#000',
// {string} Indicates how to choose the hovered nodes color.
// Available values: "node", "default"
nodeHoverColor: 'node',
// {string}
defaultNodeHoverColor: '#000',
// {string} Indicates how to choose the hovered nodes background color.
// Available values: "node", "default"
labelHoverBGColor: 'default',
// {string}
defaultHoverLabelBGColor: '#fff',
// {string} Indicates how to choose the hovered labels color.
// Available values: "node", "default"
labelHoverColor: 'default',
// {string}
defaultLabelHoverColor: '#000',
// {string} Indicates how to choose the edges hover color. Available values:
// "edge", "default"
edgeHoverColor: 'edge',
// {number} The size multiplicator of hovered edges.
edgeHoverSizeRatio: 1,
// {string}
defaultEdgeHoverColor: '#000',
// {boolean} Indicates if the edge extremities must be hovered when the
// edge is hovered.
edgeHoverExtremities: false,
// {booleans} The different drawing modes:
// false: Layered not displayed.
// true: Layered displayed.
drawEdges: true,
drawNodes: true,
drawLabels: true,
drawEdgeLabels: false,
// {boolean} Indicates if the edges must be drawn in several frames or in
// one frame, as the nodes and labels are drawn.
batchEdgesDrawing: false,
// {boolean} Indicates if the edges must be hidden during dragging and
// animations.
hideEdgesOnMove: false,
// {numbers} The different batch sizes, when elements are displayed in
// several frames.
canvasEdgesBatchSize: 500,
webglEdgesBatchSize: 1000,
/**
* RESCALE SETTINGS:
* *****************
*/
// {string} Indicates of to scale the graph relatively to its container.
// Available values: "inside", "outside"
scalingMode: 'inside',
// {number} The margin to keep around the graph.
sideMargin: 0,
// {number} Determine the size of the smallest and the biggest node / edges
// on the screen. This mapping makes easier to display the graph,
// avoiding too big nodes that take half of the screen, or too
// small ones that are not readable. If the two parameters are
// equals, then the minimal display size will be 0. And if they
// are both equal to 0, then there is no mapping, and the radius
// of the nodes will be their size.
minEdgeSize: 0.5,
maxEdgeSize: 1,
minNodeSize: 1,
maxNodeSize: 8,
/**
* CAPTORS SETTINGS:
* *****************
*/
// {boolean}
touchEnabled: true,
// {boolean}
mouseEnabled: true,
// {boolean}
mouseWheelEnabled: true,
// {boolean}
doubleClickEnabled: true,
// {boolean} Defines whether the custom events such as "clickNode" can be
// used.
eventsEnabled: true,
// {number} Defines by how much multiplicating the zooming level when the
// user zooms with the mouse-wheel.
zoomingRatio: 1.7,
// {number} Defines by how much multiplicating the zooming level when the
// user zooms by double clicking.
doubleClickZoomingRatio: 2.2,
// {number} The minimum zooming level.
zoomMin: 0.0625,
// {number} The maximum zooming level.
zoomMax: 2,
// {number} The duration of animations following a mouse scrolling.
mouseZoomDuration: 200,
// {number} The duration of animations following a mouse double click.
doubleClickZoomDuration: 200,
// {number} The duration of animations following a mouse dropping.
mouseInertiaDuration: 200,
// {number} The inertia power (mouse captor).
mouseInertiaRatio: 3,
// {number} The duration of animations following a touch dropping.
touchInertiaDuration: 200,
// {number} The inertia power (touch captor).
touchInertiaRatio: 3,
// {number} The maximum time between two clicks to make it a double click.
doubleClickTimeout: 300,
// {number} The maximum time between two taps to make it a double tap.
doubleTapTimeout: 300,
// {number} The maximum time of dragging to trigger intertia.
dragTimeout: 200,
/**
* GLOBAL SETTINGS:
* ****************
*/
// {boolean} Determines whether the instance has to refresh itself
// automatically when a "resize" event is dispatched from the
// window object.
autoResize: true,
// {boolean} Determines whether the "rescale" middleware has to be called
// automatically for each camera on refresh.
autoRescale: true,
// {boolean} If set to false, the camera method "goTo" will basically do
// nothing.
enableCamera: true,
// {boolean} If set to false, the nodes cannot be hovered.
enableHovering: true,
// {boolean} If set to true, the edges can be hovered.
enableEdgeHovering: false,
// {number} The size of the area around the edges to activate hovering.
edgeHoverPrecision: 5,
// {boolean} If set to true, the rescale middleware will ignore node sizes
// to determine the graphs boundings.
rescaleIgnoreSize: false,
// {boolean} Determines if the core has to try to catch errors on
// rendering.
skipErrors: false,
/**
* CAMERA SETTINGS:
* ****************
*/
// {number} The power degrees applied to the nodes/edges size relatively to
// the zooming level. Basically:
// > onScreenR = Math.pow(zoom, nodesPowRatio) * R
// > onScreenT = Math.pow(zoom, edgesPowRatio) * T
nodesPowRatio: 0.5,
edgesPowRatio: 0.5,
/**
* ANIMATIONS SETTINGS:
* ********************
*/
// {number} The default animation time.
animationsTime: 200
};
// Export the previously designed settings:
sigma.settings = sigma.utils.extend(sigma.settings || {}, settings);
}).call(this);
;(function() {
'use strict';
/**
* Dispatcher constructor.
*
* @return {dispatcher} The new dispatcher instance.
*/
var dispatcher = function() {
Object.defineProperty(this, '_handlers', {
value: {}
});
};
/**
* Will execute the handler everytime that the indicated event (or the
* indicated events) will be triggered.
*
* @param {string} events The name of the event (or the events
* separated by spaces).
* @param {function(Object)} handler The handler to bind.
* @return {dispatcher} Returns the instance itself.
*/
dispatcher.prototype.bind = function(events, handler) {
var i,
l,
event,
eArray;
if (
arguments.length === 1 &&
typeof arguments[0] === 'object'
)
for (events in arguments[0])
this.bind(events, arguments[0][events]);
else if (
arguments.length === 2 &&
typeof arguments[1] === 'function'
) {
eArray = typeof events === 'string' ? events.split(' ') : events;
for (i = 0, l = eArray.length; i !== l; i += 1) {
event = eArray[i];
// Check that event is not '':
if (!event)
continue;
if (!this._handlers[event])
this._handlers[event] = [];
// Using an object instead of directly the handler will make possible
// later to add flags
this._handlers[event].push({
handler: handler
});
}
} else
throw 'bind: Wrong arguments.';
return this;
};
/**
* Removes the handler from a specified event (or specified events).
*
* @param {?string} events The name of the event (or the events
* separated by spaces). If undefined,
* then all handlers are removed.
* @param {?function(object)} handler The handler to unbind. If undefined,
* each handler bound to the event or the
* events will be removed.
* @return {dispatcher} Returns the instance itself.
*/
dispatcher.prototype.unbind = function(events, handler) {
var i,
n,
j,
m,
k,
a,
event,
eArray = typeof events === 'string' ? events.split(' ') : events;
if (!arguments.length) {
for (k in this._handlers)
delete this._handlers[k];
return this;
}
if (handler) {
for (i = 0, n = eArray.length; i !== n; i += 1) {
event = eArray[i];
if (this._handlers[event]) {
a = [];
for (j = 0, m = this._handlers[event].length; j !== m; j += 1)
if (this._handlers[event][j].handler !== handler)
a.push(this._handlers[event][j]);
this._handlers[event] = a;
}
if (this._handlers[event] && this._handlers[event].length === 0)
delete this._handlers[event];
}
} else
for (i = 0, n = eArray.length; i !== n; i += 1)
delete this._handlers[eArray[i]];
return this;
};
/**
* Executes each handler bound to the event
*
* @param {string} events The name of the event (or the events separated
* by spaces).
* @param {?object} data The content of the event (optional).
* @return {dispatcher} Returns the instance itself.
*/
dispatcher.prototype.dispatchEvent = function(events, data) {
var i,
n,
j,
m,
a,
event,
eventName,
self = this,
eArray = typeof events === 'string' ? events.split(' ') : events;
data = data === undefined ? {} : data;
for (i = 0, n = eArray.length; i !== n; i += 1) {
eventName = eArray[i];
if (this._handlers[eventName]) {
event = self.getEvent(eventName, data);
a = [];
for (j = 0, m = this._handlers[eventName].length; j !== m; j += 1) {
this._handlers[eventName][j].handler(event);
if (!this._handlers[eventName][j].one)
a.push(this._handlers[eventName][j]);
}
this._handlers[eventName] = a;
}
}
return this;
};
/**
* Return an event object.
*
* @param {string} events The name of the event.
* @param {?object} data The content of the event (optional).
* @return {object} Returns the instance itself.
*/
dispatcher.prototype.getEvent = function(event, data) {
return {
type: event,
data: data || {},
target: this
};
};
/**
* A useful function to deal with inheritance. It will make the target
* inherit the prototype of the class dispatcher as well as its constructor.
*
* @param {object} target The target.
*/
dispatcher.extend = function(target, args) {
var k;
for (k in dispatcher.prototype)
if (dispatcher.prototype.hasOwnProperty(k))
target[k] = dispatcher.prototype[k];
dispatcher.apply(target, args);
};
/**
* EXPORT:
* *******
*/
if (typeof this.sigma !== 'undefined') {
this.sigma.classes = this.sigma.classes || {};
this.sigma.classes.dispatcher = dispatcher;
} else if (typeof exports !== 'undefined') {
if (typeof module !== 'undefined' && module.exports)
exports = module.exports = dispatcher;
exports.dispatcher = dispatcher;
} else
this.dispatcher = dispatcher;
}).call(this);
;(function() {
'use strict';
/**
* This utils aims to facilitate the manipulation of each instance setting.
* Using a function instead of an object brings two main advantages: First,
* it will be easier in the future to catch settings updates through a
* function than an object. Second, giving it a full object will "merge" it
* to the settings object properly, keeping us to have to always add a loop.
*
* @return {configurable} The "settings" function.
*/
var configurable = function() {
var i,
l,
data = {},
datas = Array.prototype.slice.call(arguments, 0);
/**
* The method to use to set or get any property of this instance.
*
* @param {string|object} a1 If it is a string and if a2 is undefined,
* then it will return the corresponding
* property. If it is a string and if a2 is
* set, then it will set a2 as the property
* corresponding to a1, and return this. If
* it is an object, then each pair string +
* object(or any other type) will be set as a
* property.
* @param {*?} a2 The new property corresponding to a1 if a1
* is a string.
* @return {*|configurable} Returns itself or the corresponding
* property.
*
* Polymorphism:
* *************
* Here are some basic use examples:
*
* > settings = new configurable();
* > settings('mySetting', 42);
* > settings('mySetting'); // Logs: 42
* > settings('mySetting', 123);
* > settings('mySetting'); // Logs: 123
* > settings({mySetting: 456});
* > settings('mySetting'); // Logs: 456
*
* Also, it is possible to use the function as a fallback:
* > settings({mySetting: 'abc'}, 'mySetting'); // Logs: 'abc'
* > settings({hisSetting: 'abc'}, 'mySetting'); // Logs: 456
*/
var settings = function(a1, a2) {
var o,
i,
l,
k;
if (arguments.length === 1 && typeof a1 === 'string') {
if (data[a1] !== undefined)
return data[a1];
for (i = 0, l = datas.length; i < l; i++)
if (datas[i][a1] !== undefined)
return datas[i][a1];
return undefined;
} else if (typeof a1 === 'object' && typeof a2 === 'string') {
return (a1 || {})[a2] !== undefined ? a1[a2] : settings(a2);
} else {
o = (typeof a1 === 'object' && a2 === undefined) ? a1 : {};
if (typeof a1 === 'string')
o[a1] = a2;
for (i = 0, k = Object.keys(o), l = k.length; i < l; i++)
data[k[i]] = o[k[i]];
return this;
}
};
/**
* This method returns a new configurable function, with new objects
*
* @param {object*} Any number of objects to search in.
* @return {function} Returns the function. Check its documentation to know
* more about how it works.
*/
settings.embedObjects = function() {
var args = datas.concat(
data
).concat(
Array.prototype.splice.call(arguments, 0)
);
return configurable.apply({}, args);
};
// Initialize
for (i = 0, l = arguments.length; i < l; i++)
settings(arguments[i]);
return settings;
};
/**
* EXPORT:
* *******
*/
if (typeof this.sigma !== 'undefined') {
this.sigma.classes = this.sigma.classes || {};
this.sigma.classes.configurable = configurable;
} else if (typeof exports !== 'undefined') {
if (typeof module !== 'undefined' && module.exports)
exports = module.exports = configurable;
exports.configurable = configurable;
} else
this.configurable = configurable;
}).call(this);
;(function(undefined) {
'use strict';
var _methods = Object.create(null),
_indexes = Object.create(null),
_initBindings = Object.create(null),
_methodBindings = Object.create(null),
_methodBeforeBindings = Object.create(null),
_defaultSettings = {
immutable: true,
clone: true
},
_defaultSettingsFunction = function(key) {
return _defaultSettings[key];
};
/**
* The graph constructor. It initializes the data and the indexes, and binds
* the custom indexes and methods to its own scope.
*
* Recognized parameters:
* **********************
* Here is the exhaustive list of every accepted parameters in the settings
* object:
*
* {boolean} clone Indicates if the data have to be cloned in methods
* to add nodes or edges.
* {boolean} immutable Indicates if nodes "id" values and edges "id",
* "source" and "target" values must be set as
* immutable.
*
* @param {?configurable} settings Eventually a settings function.
* @return {graph} The new graph instance.
*/
var graph = function(settings) {
var k,
fn,
data;
/**
* DATA:
* *****
* Every data that is callable from graph methods are stored in this "data"
* object. This object will be served as context for all these methods,
* and it is possible to add other type of data in it.
*/
data = {
/**
* SETTINGS FUNCTION:
* ******************
*/
settings: settings || _defaultSettingsFunction,
/**
* MAIN DATA:
* **********
*/
nodesArray: [],
edgesArray: [],
/**
* GLOBAL INDEXES:
* ***************
* These indexes just index data by ids.
*/
nodesIndex: Object.create(null),
edgesIndex: Object.create(null),
/**
* LOCAL INDEXES:
* **************
* These indexes refer from node to nodes. Each key is an id, and each
* value is the array of the ids of related nodes.
*/
inNeighborsIndex: Object.create(null),
outNeighborsIndex: Object.create(null),
allNeighborsIndex: Object.create(null),
inNeighborsCount: Object.create(null),
outNeighborsCount: Object.create(null),
allNeighborsCount: Object.create(null)
};
// Execute bindings:
for (k in _initBindings)
_initBindings[k].call(data);
// Add methods to both the scope and the data objects:
for (k in _methods) {
fn = __bindGraphMethod(k, data, _methods[k]);
this[k] = fn;
data[k] = fn;
}
};
/**
* A custom tool to bind methods such that function that are bound to it will
* be executed anytime the method is called.
*
* @param {string} methodName The name of the method to bind.
* @param {object} scope The scope where the method must be executed.
* @param {function} fn The method itself.
* @return {function} The new method.
*/
function __bindGraphMethod(methodName, scope, fn) {
var result = function() {
var k,
res;
// Execute "before" bound functions:
for (k in _methodBeforeBindings[methodName])
_methodBeforeBindings[methodName][k].apply(scope, arguments);
// Apply the method:
res = fn.apply(scope, arguments);
// Execute bound functions:
for (k in _methodBindings[methodName])
_methodBindings[methodName][k].apply(scope, arguments);
// Return res:
return res;
};
return result;
}
/**
* This custom tool function removes every pair key/value from an hash. The
* goal is to avoid creating a new object while some other references are
* still hanging in some scopes...
*
* @param {object} obj The object to empty.
* @return {object} The empty object.
*/
function __emptyObject(obj) {
var k;
for (k in obj)
if (!('hasOwnProperty' in obj) || obj.hasOwnProperty(k))
delete obj[k];
return obj;
}
/**
* This global method adds a method that will be bound to the futurly created
* graph instances.
*
* Since these methods will be bound to their scope when the instances are
* created, it does not use the prototype. Because of that, methods have to
* be added before instances are created to make them available.
*
* Here is an example:
*
* > graph.addMethod('getNodesCount', function() {
* > return this.nodesArray.length;
* > });
* >
* > var myGraph = new graph();
* > console.log(myGraph.getNodesCount()); // outputs 0
*
* @param {string} methodName The name of the method.
* @param {function} fn The method itself.
* @return {object} The global graph constructor.
*/
graph.addMethod = function(methodName, fn) {
if (
typeof methodName !== 'string' ||
typeof fn !== 'function' ||
arguments.length !== 2
)
throw 'addMethod: Wrong arguments.';
if (_methods[methodName] || graph[methodName])
throw 'The method "' + methodName + '" already exists.';
_methods[methodName] = fn;
_methodBindings[methodName] = Object.create(null);
_methodBeforeBindings[methodName] = Object.create(null);
return this;
};
/**
* This global method returns true if the method has already been added, and
* false else.
*
* Here are some examples:
*
* > graph.hasMethod('addNode'); // returns true
* > graph.hasMethod('hasMethod'); // returns true
* > graph.hasMethod('unexistingMethod'); // returns false
*
* @param {string} methodName The name of the method.
* @return {boolean} The result.
*/
graph.hasMethod = function(methodName) {
return !!(_methods[methodName] || graph[methodName]);
};
/**
* This global methods attaches a function to a method. Anytime the specified
* method is called, the attached function is called right after, with the
* same arguments and in the same scope. The attached function is called
* right before if the last argument is true, unless the method is the graph
* constructor.
*
* To attach a function to the graph constructor, use 'constructor' as the
* method name (first argument).
*
* The main idea is to have a clean way to keep custom indexes up to date,
* for instance:
*
* > var timesAddNodeCalled = 0;
* > graph.attach('addNode', 'timesAddNodeCalledInc', function() {
* > timesAddNodeCalled++;
* > });
* >
* > var myGraph = new graph();
* > console.log(timesAddNodeCalled); // outputs 0
* >
* > myGraph.addNode({ id: '1' }).addNode({ id: '2' });
* > console.log(timesAddNodeCalled); // outputs 2
*
* The idea for calling a function before is to provide pre-processors, for
* instance:
*
* > var colorPalette = { Person: '#C3CBE1', Place: '#9BDEBD' };
* > graph.attach('addNode', 'applyNodeColorPalette', function(n) {
* > n.color = colorPalette[n.category];
* > }, true);
* >
* > var myGraph = new graph();
* > myGraph.addNode({ id: 'n0', category: 'Person' });
* > console.log(myGraph.nodes('n0').color); // outputs '#C3CBE1'
*
* @param {string} methodName The name of the related method or
* "constructor".
* @param {string} key The key to identify the function to attach.
* @param {function} fn The function to bind.
* @param {boolean} before If true the function is called right before.
* @return {object} The global graph constructor.
*/
graph.attach = function(methodName, key, fn, before) {
if (
typeof methodName !== 'string' ||
typeof key !== 'string' ||
typeof fn !== 'function' ||
arguments.length < 3 ||
arguments.length > 4
)
throw 'attach: Wrong arguments.';
var bindings;
if (methodName === 'constructor')
bindings = _initBindings;
else {
if (before) {
if (!_methodBeforeBindings[methodName])
throw 'The method "' + methodName + '" does not exist.';
bindings = _methodBeforeBindings[methodName];
}
else {
if (!_methodBindings[methodName])
throw 'The method "' + methodName + '" does not exist.';
bindings = _methodBindings[methodName];
}
}
if (bindings[key])
throw 'A function "' + key + '" is already attached ' +
'to the method "' + methodName + '".';
bindings[key] = fn;
return this;
};
/**
* Alias of attach(methodName, key, fn, true).
*/
graph.attachBefore = function(methodName, key, fn) {
return this.attach(methodName, key, fn, true);
};
/**
* This methods is just an helper to deal with custom indexes. It takes as
* arguments the name of the index and an object containing all the different
* functions to bind to the methods.
*
* Here is a basic example, that creates an index to keep the number of nodes
* in the current graph. It also adds a method to provide a getter on that
* new index:
*
* > sigma.classes.graph.addIndex('nodesCount', {
* > constructor: function() {
* > this.nodesCount = 0;
* > },
* > addNode: function() {
* > this.nodesCount++;
* > },
* > dropNode: function() {
* > this.nodesCount--;
* > }
* > });
* >
* > sigma.classes.graph.addMethod('getNodesCount', function() {
* > return this.nodesCount;
* > });
* >
* > var myGraph = new sigma.classes.graph();
* > console.log(myGraph.getNodesCount()); // outputs 0
* >
* > myGraph.addNode({ id: '1' }).addNode({ id: '2' });
* > console.log(myGraph.getNodesCount()); // outputs 2
*
* @param {string} name The name of the index.
* @param {object} bindings The object containing the functions to bind.
* @return {object} The global graph constructor.
*/
graph.addIndex = function(name, bindings) {
if (
typeof name !== 'string' ||
Object(bindings) !== bindings ||
arguments.length !== 2
)
throw 'addIndex: Wrong arguments.';
if (_indexes[name])
throw 'The index "' + name + '" already exists.';
var k;
// Store the bindings:
_indexes[name] = bindings;
// Attach the bindings:
for (k in bindings)
if (typeof bindings[k] !== 'function')
throw 'The bindings must be functions.';
else
graph.attach(k, name, bindings[k]);
return this;
};
/**
* This method adds a node to the graph. The node must be an object, with a
* string under the key "id". Except for this, it is possible to add any
* other attribute, that will be preserved all along the manipulations.
*
* If the graph option "clone" has a truthy value, the node will be cloned
* when added to the graph. Also, if the graph option "immutable" has a
* truthy value, its id will be defined as immutable.
*
* @param {object} node The node to add.
* @return {object} The graph instance.
*/
graph.addMethod('addNode', function(node) {
// Check that the node is an object and has an id:
if (Object(node) !== node || arguments.length !== 1)
throw 'addNode: Wrong arguments.';
if (typeof node.id !== 'string' && typeof node.id !== 'number')
throw 'The node must have a string or number id.';
if (this.nodesIndex[node.id])
throw 'The node "' + node.id + '" already exists.';
var k,
id = node.id,
validNode = Object.create(null);
// Check the "clone" option:
if (this.settings('clone')) {
for (k in node)
if (k !== 'id')
validNode[k] = node[k];
} else
validNode = node;
// Check the "immutable" option:
if (this.settings('immutable'))
Object.defineProperty(validNode, 'id', {
value: id,
enumerable: true
});
else
validNode.id = id;
// Add empty containers for edges indexes:
this.inNeighborsIndex[id] = Object.create(null);
this.outNeighborsIndex[id] = Object.create(null);
this.allNeighborsIndex[id] = Object.create(null);
this.inNeighborsCount[id] = 0;
this.outNeighborsCount[id] = 0;
this.allNeighborsCount[id] = 0;
// Add the node to indexes:
this.nodesArray.push(validNode);
this.nodesIndex[validNode.id] = validNode;
// Return the current instance:
return this;
});
/**
* This method adds an edge to the graph. The edge must be an object, with a
* string under the key "id", and strings under the keys "source" and
* "target" that design existing nodes. Except for this, it is possible to
* add any other attribute, that will be preserved all along the
* manipulations.
*
* If the graph option "clone" has a truthy value, the edge will be cloned
* when added to the graph. Also, if the graph option "immutable" has a
* truthy value, its id, source and target will be defined as immutable.
*
* @param {object} edge The edge to add.
* @return {object} The graph instance.
*/
graph.addMethod('addEdge', function(edge) {
// Check that the edge is an object and has an id:
if (Object(edge) !== edge || arguments.length !== 1)
throw 'addEdge: Wrong arguments.';
if (typeof edge.id !== 'string' && typeof edge.id !== 'number')
throw 'The edge must have a string or number id.';
if ((typeof edge.source !== 'string' && typeof edge.source !== 'number') ||
!this.nodesIndex[edge.source])
throw 'The edge source must have an existing node id.';
if ((typeof edge.target !== 'string' && typeof edge.target !== 'number') ||
!this.nodesIndex[edge.target])
throw 'The edge target must have an existing node id.';
if (this.edgesIndex[edge.id])
throw 'The edge "' + edge.id + '" already exists.';
var k,
validEdge = Object.create(null);
// Check the "clone" option:
if (this.settings('clone')) {
for (k in edge)
if (k !== 'id' && k !== 'source' && k !== 'target')
validEdge[k] = edge[k];
} else
validEdge = edge;
// Check the "immutable" option:
if (this.settings('immutable')) {
Object.defineProperty(validEdge, 'id', {
value: edge.id,
enumerable: true
});
Object.defineProperty(validEdge, 'source', {
value: edge.source,
enumerable: true
});
Object.defineProperty(validEdge, 'target', {
value: edge.target,
enumerable: true
});
} else {
validEdge.id = edge.id;
validEdge.source = edge.source;
validEdge.target = edge.target;
}
// Add the edge to indexes:
this.edgesArray.push(validEdge);
this.edgesIndex[validEdge.id] = validEdge;
if (!this.inNeighborsIndex[validEdge.target][validEdge.source])
this.inNeighborsIndex[validEdge.target][validEdge.source] =
Object.create(null);
this.inNeighborsIndex[validEdge.target][validEdge.source][validEdge.id] =
validEdge;
if (!this.outNeighborsIndex[validEdge.source][validEdge.target])
this.outNeighborsIndex[validEdge.source][validEdge.target] =
Object.create(null);
this.outNeighborsIndex[validEdge.source][validEdge.target][validEdge.id] =
validEdge;
if (!this.allNeighborsIndex[validEdge.source][validEdge.target])
this.allNeighborsIndex[validEdge.source][validEdge.target] =
Object.create(null);
this.allNeighborsIndex[validEdge.source][validEdge.target][validEdge.id] =
validEdge;
if (validEdge.target !== validEdge.source) {
if (!this.allNeighborsIndex[validEdge.target][validEdge.source])
this.allNeighborsIndex[validEdge.target][validEdge.source] =
Object.create(null);
this.allNeighborsIndex[validEdge.target][validEdge.source][validEdge.id] =
validEdge;
}
// Keep counts up to date:
this.inNeighborsCount[validEdge.target]++;
this.outNeighborsCount[validEdge.source]++;
this.allNeighborsCount[validEdge.target]++;
this.allNeighborsCount[validEdge.source]++;
return this;
});
/**
* This method drops a node from the graph. It also removes each edge that is
* bound to it, through the dropEdge method. An error is thrown if the node
* does not exist.
*
* @param {string} id The node id.
* @return {object} The graph instance.
*/
graph.addMethod('dropNode', function(id) {
// Check that the arguments are valid:
if ((typeof id !== 'string' && typeof id !== 'number') ||
arguments.length !== 1)
throw 'dropNode: Wrong arguments.';
if (!this.nodesIndex[id])
throw 'The node "' + id + '" does not exist.';
var i, k, l;
// Remove the node from indexes:
delete this.nodesIndex[id];
for (i = 0, l = this.nodesArray.length; i < l; i++)
if (this.nodesArray[i].id === id) {
this.nodesArray.splice(i, 1);
break;
}
// Remove related edges:
for (i = this.edgesArray.length - 1; i >= 0; i--)
if (this.edgesArray[i].source === id || this.edgesArray[i].target === id)
this.dropEdge(this.edgesArray[i].id);
// Remove related edge indexes:
delete this.inNeighborsIndex[id];
delete this.outNeighborsIndex[id];
delete this.allNeighborsIndex[id];
delete this.inNeighborsCount[id];
delete this.outNeighborsCount[id];
delete this.allNeighborsCount[id];
for (k in this.nodesIndex) {
delete this.inNeighborsIndex[k][id];
delete this.outNeighborsIndex[k][id];
delete this.allNeighborsIndex[k][id];
}
return this;
});
/**
* This method drops an edge from the graph. An error is thrown if the edge
* does not exist.
*
* @param {string} id The edge id.
* @return {object} The graph instance.
*/
graph.addMethod('dropEdge', function(id) {
// Check that the arguments are valid:
if ((typeof id !== 'string' && typeof id !== 'number') ||
arguments.length !== 1)
throw 'dropEdge: Wrong arguments.';
if (!this.edgesIndex[id])
throw 'The edge "' + id + '" does not exist.';
var i, l, edge;
// Remove the edge from indexes:
edge = this.edgesIndex[id];
delete this.edgesIndex[id];
for (i = 0, l = this.edgesArray.length; i < l; i++)
if (this.edgesArray[i].id === id) {
this.edgesArray.splice(i, 1);
break;
}
delete this.inNeighborsIndex[edge.target][edge.source][edge.id];
if (!Object.keys(this.inNeighborsIndex[edge.target][edge.source]).length)
delete this.inNeighborsIndex[edge.target][edge.source];
delete this.outNeighborsIndex[edge.source][edge.target][edge.id];
if (!Object.keys(this.outNeighborsIndex[edge.source][edge.target]).length)
delete this.outNeighborsIndex[edge.source][edge.target];
delete this.allNeighborsIndex[edge.source][edge.target][edge.id];
if (!Object.keys(this.allNeighborsIndex[edge.source][edge.target]).length)
delete this.allNeighborsIndex[edge.source][edge.target];
if (edge.target !== edge.source) {
delete this.allNeighborsIndex[edge.target][edge.source][edge.id];
if (!Object.keys(this.allNeighborsIndex[edge.target][edge.source]).length)
delete this.allNeighborsIndex[edge.target][edge.source];
}
this.inNeighborsCount[edge.target]--;
this.outNeighborsCount[edge.source]--;
this.allNeighborsCount[edge.source]--;
this.allNeighborsCount[edge.target]--;
return this;
});
/**
* This method destroys the current instance. It basically empties each index
* and methods attached to the graph.
*/
graph.addMethod('kill', function() {
// Delete arrays:
this.nodesArray.length = 0;
this.edgesArray.length = 0;
delete this.nodesArray;
delete this.edgesArray;
// Delete indexes:
delete this.nodesIndex;
delete this.edgesIndex;
delete this.inNeighborsIndex;
delete this.outNeighborsIndex;
delete this.allNeighborsIndex;
delete this.inNeighborsCount;
delete this.outNeighborsCount;
delete this.allNeighborsCount;
});
/**
* This method empties the nodes and edges arrays, as well as the different
* indexes.
*
* @return {object} The graph instance.
*/
graph.addMethod('clear', function() {
this.nodesArray.length = 0;
this.edgesArray.length = 0;
// Due to GC issues, I prefer not to create new object. These objects are
// only available from the methods and attached functions, but still, it is
// better to prevent ghost references to unrelevant data...
__emptyObject(this.nodesIndex);
__emptyObject(this.edgesIndex);
__emptyObject(this.nodesIndex);
__emptyObject(this.inNeighborsIndex);
__emptyObject(this.outNeighborsIndex);
__emptyObject(this.allNeighborsIndex);
__emptyObject(this.inNeighborsCount);
__emptyObject(this.outNeighborsCount);
__emptyObject(this.allNeighborsCount);
return this;
});
/**
* This method reads an object and adds the nodes and edges, through the
* proper methods "addNode" and "addEdge".
*
* Here is an example:
*
* > var myGraph = new graph();
* > myGraph.read({
* > nodes: [
* > { id: 'n0' },
* > { id: 'n1' }
* > ],
* > edges: [
* > {
* > id: 'e0',
* > source: 'n0',
* > target: 'n1'
* > }
* > ]
* > });
* >
* > console.log(
* > myGraph.nodes().length,
* > myGraph.edges().length
* > ); // outputs 2 1
*
* @param {object} g The graph object.
* @return {object} The graph instance.
*/
graph.addMethod('read', function(g) {
var i,
a,
l;
a = g.nodes || [];
for (i = 0, l = a.length; i < l; i++)
this.addNode(a[i]);
a = g.edges || [];
for (i = 0, l = a.length; i < l; i++)
this.addEdge(a[i]);
return this;
});
/**
* This methods returns one or several nodes, depending on how it is called.
*
* To get the array of nodes, call "nodes" without argument. To get a
* specific node, call it with the id of the node. The get multiple node,
* call it with an array of ids, and it will return the array of nodes, in
* the same order.
*
* @param {?(string|array)} v Eventually one id, an array of ids.
* @return {object|array} The related node or array of nodes.
*/
graph.addMethod('nodes', function(v) {
// Clone the array of nodes and return it:
if (!arguments.length)
return this.nodesArray.slice(0);
// Return the related node:
if (arguments.length === 1 &&
(typeof v === 'string' || typeof v === 'number'))
return this.nodesIndex[v];
// Return an array of the related node:
if (
arguments.length === 1 &&
Object.prototype.toString.call(v) === '[object Array]'
) {
var i,
l,
a = [];
for (i = 0, l = v.length; i < l; i++)
if (typeof v[i] === 'string' || typeof v[i] === 'number')
a.push(this.nodesIndex[v[i]]);
else
throw 'nodes: Wrong arguments.';
return a;
}
throw 'nodes: Wrong arguments.';
});
/**
* This methods returns the degree of one or several nodes, depending on how
* it is called. It is also possible to get incoming or outcoming degrees
* instead by specifying 'in' or 'out' as a second argument.
*
* @param {string|array} v One id, an array of ids.
* @param {?string} which Which degree is required. Values are 'in',
* 'out', and by default the normal degree.
* @return {number|array} The related degree or array of degrees.
*/
graph.addMethod('degree', function(v, which) {
// Check which degree is required:
which = {
'in': this.inNeighborsCount,
'out': this.outNeighborsCount
}[which || ''] || this.allNeighborsCount;
// Return the related node:
if (typeof v === 'string' || typeof v === 'number')
return which[v];
// Return an array of the related node:
if (Object.prototype.toString.call(v) === '[object Array]') {
var i,
l,
a = [];
for (i = 0, l = v.length; i < l; i++)
if (typeof v[i] === 'string' || typeof v[i] === 'number')
a.push(which[v[i]]);
else
throw 'degree: Wrong arguments.';
return a;
}
throw 'degree: Wrong arguments.';
});
/**
* This methods returns one or several edges, depending on how it is called.
*
* To get the array of edges, call "edges" without argument. To get a
* specific edge, call it with the id of the edge. The get multiple edge,
* call it with an array of ids, and it will return the array of edges, in
* the same order.
*
* @param {?(string|array)} v Eventually one id, an array of ids.
* @return {object|array} The related edge or array of edges.
*/
graph.addMethod('edges', function(v) {
// Clone the array of edges and return it:
if (!arguments.length)
return this.edgesArray.slice(0);
// Return the related edge:
if (arguments.length === 1 &&
(typeof v === 'string' || typeof v === 'number'))
return this.edgesIndex[v];
// Return an array of the related edge:
if (
arguments.length === 1 &&
Object.prototype.toString.call(v) === '[object Array]'
) {
var i,
l,
a = [];
for (i = 0, l = v.length; i < l; i++)
if (typeof v[i] === 'string' || typeof v[i] === 'number')
a.push(this.edgesIndex[v[i]]);
else
throw 'edges: Wrong arguments.';
return a;
}
throw 'edges: Wrong arguments.';
});
/**
* EXPORT:
* *******
*/
if (typeof sigma !== 'undefined') {
sigma.classes = sigma.classes || Object.create(null);
sigma.classes.graph = graph;
} else if (typeof exports !== 'undefined') {
if (typeof module !== 'undefined' && module.exports)
exports = module.exports = graph;
exports.graph = graph;
} else
this.graph = graph;
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
sigma.utils.pkg('sigma.classes');
/**
* The camera constructor. It just initializes its attributes and methods.
*
* @param {string} id The id.
* @param {sigma.classes.graph} graph The graph.
* @param {configurable} settings The settings function.
* @param {?object} options Eventually some overriding options.
* @return {camera} Returns the fresh new camera instance.
*/
sigma.classes.camera = function(id, graph, settings, options) {
sigma.classes.dispatcher.extend(this);
Object.defineProperty(this, 'graph', {
value: graph
});
Object.defineProperty(this, 'id', {
value: id
});
Object.defineProperty(this, 'readPrefix', {
value: 'read_cam' + id + ':'
});
Object.defineProperty(this, 'prefix', {
value: 'cam' + id + ':'
});
this.x = 0;
this.y = 0;
this.ratio = 1;
this.angle = 0;
this.isAnimated = false;
this.settings = (typeof options === 'object' && options) ?
settings.embedObject(options) :
settings;
};
/**
* Updates the camera position.
*
* @param {object} coordinates The new coordinates object.
* @return {camera} Returns the camera.
*/
sigma.classes.camera.prototype.goTo = function(coordinates) {
if (!this.settings('enableCamera'))
return this;
var i,
l,
c = coordinates || {},
keys = ['x', 'y', 'ratio', 'angle'];
for (i = 0, l = keys.length; i < l; i++)
if (c[keys[i]] !== undefined) {
if (typeof c[keys[i]] === 'number' && !isNaN(c[keys[i]]))
this[keys[i]] = c[keys[i]];
else
throw 'Value for "' + keys[i] + '" is not a number.';
}
this.dispatchEvent('coordinatesUpdated');
return this;
};
/**
* This method takes a graph and computes for each node and edges its
* coordinates relatively to the center of the camera. Basically, it will
* compute the coordinates that will be used by the graphic renderers.
*
* Since it should be possible to use different cameras and different
* renderers, it is possible to specify a prefix to put before the new
* coordinates (to get something like "node.camera1_x")
*
* @param {?string} read The prefix of the coordinates to read.
* @param {?string} write The prefix of the coordinates to write.
* @param {?object} options Eventually an object of options. Those can be:
* - A restricted nodes array.
* - A restricted edges array.
* - A width.
* - A height.
* @return {camera} Returns the camera.
*/
sigma.classes.camera.prototype.applyView = function(read, write, options) {
options = options || {};
write = write !== undefined ? write : this.prefix;
read = read !== undefined ? read : this.readPrefix;
var nodes = options.nodes || this.graph.nodes(),
edges = options.edges || this.graph.edges();
var i,
l,
node,
relCos = Math.cos(this.angle) / this.ratio,
relSin = Math.sin(this.angle) / this.ratio,
nodeRatio = Math.pow(this.ratio, this.settings('nodesPowRatio')),
edgeRatio = Math.pow(this.ratio, this.settings('edgesPowRatio')),
xOffset = (options.width || 0) / 2 - this.x * relCos - this.y * relSin,
yOffset = (options.height || 0) / 2 - this.y * relCos + this.x * relSin;
for (i = 0, l = nodes.length; i < l; i++) {
node = nodes[i];
node[write + 'x'] =
(node[read + 'x'] || 0) * relCos +
(node[read + 'y'] || 0) * relSin +
xOffset;
node[write + 'y'] =
(node[read + 'y'] || 0) * relCos -
(node[read + 'x'] || 0) * relSin +
yOffset;
node[write + 'size'] =
(node[read + 'size'] || 0) /
nodeRatio;
}
for (i = 0, l = edges.length; i < l; i++) {
edges[i][write + 'size'] =
(edges[i][read + 'size'] || 0) /
edgeRatio;
}
return this;
};
/**
* This function converts the coordinates of a point from the frame of the
* camera to the frame of the graph.
*
* @param {number} x The X coordinate of the point in the frame of the
* camera.
* @param {number} y The Y coordinate of the point in the frame of the
* camera.
* @return {object} The point coordinates in the frame of the graph.
*/
sigma.classes.camera.prototype.graphPosition = function(x, y, vector) {
var X = 0,
Y = 0,
cos = Math.cos(this.angle),
sin = Math.sin(this.angle);
// Revert the origin differential vector:
if (!vector) {
X = - (this.x * cos + this.y * sin) / this.ratio;
Y = - (this.y * cos - this.x * sin) / this.ratio;
}
return {
x: (x * cos + y * sin) / this.ratio + X,
y: (y * cos - x * sin) / this.ratio + Y
};
};
/**
* This function converts the coordinates of a point from the frame of the
* graph to the frame of the camera.
*
* @param {number} x The X coordinate of the point in the frame of the
* graph.
* @param {number} y The Y coordinate of the point in the frame of the
* graph.
* @return {object} The point coordinates in the frame of the camera.
*/
sigma.classes.camera.prototype.cameraPosition = function(x, y, vector) {
var X = 0,
Y = 0,
cos = Math.cos(this.angle),
sin = Math.sin(this.angle);
// Revert the origin differential vector:
if (!vector) {
X = - (this.x * cos + this.y * sin) / this.ratio;
Y = - (this.y * cos - this.x * sin) / this.ratio;
}
return {
x: ((x - X) * cos - (y - Y) * sin) * this.ratio,
y: ((y - Y) * cos + (x - X) * sin) * this.ratio
};
};
/**
* This method returns the transformation matrix of the camera. This is
* especially useful to apply the camera view directly in shaders, in case of
* WebGL rendering.
*
* @return {array} The transformation matrix.
*/
sigma.classes.camera.prototype.getMatrix = function() {
var scale = sigma.utils.matrices.scale(1 / this.ratio),
rotation = sigma.utils.matrices.rotation(this.angle),
translation = sigma.utils.matrices.translation(-this.x, -this.y),
matrix = sigma.utils.matrices.multiply(
translation,
sigma.utils.matrices.multiply(
rotation,
scale
)
);
return matrix;
};
/**
* Taking a width and a height as parameters, this method returns the
* coordinates of the rectangle representing the camera on screen, in the
* graph's referentiel.
*
* To keep displaying labels of nodes going out of the screen, the method
* keeps a margin around the screen in the returned rectangle.
*
* @param {number} width The width of the screen.
* @param {number} height The height of the screen.
* @return {object} The rectangle as x1, y1, x2 and y2, representing
* two opposite points.
*/
sigma.classes.camera.prototype.getRectangle = function(width, height) {
var widthVect = this.cameraPosition(width, 0, true),
heightVect = this.cameraPosition(0, height, true),
centerVect = this.cameraPosition(width / 2, height / 2, true),
marginX = this.cameraPosition(width / 4, 0, true).x,
marginY = this.cameraPosition(0, height / 4, true).y;
return {
x1: this.x - centerVect.x - marginX,
y1: this.y - centerVect.y - marginY,
x2: this.x - centerVect.x + marginX + widthVect.x,
y2: this.y - centerVect.y - marginY + widthVect.y,
height: Math.sqrt(
Math.pow(heightVect.x, 2) +
Math.pow(heightVect.y + 2 * marginY, 2)
)
};
};
}).call(this);
;(function(undefined) {
'use strict';
/**
* Sigma Quadtree Module
* =====================
*
* Author: Guillaume Plique (Yomguithereal)
* Version: 0.2
*/
/**
* Quad Geometric Operations
* -------------------------
*
* A useful batch of geometric operations used by the quadtree.
*/
var _geom = {
/**
* Transforms a graph node with x, y and size into an
* axis-aligned square.
*
* @param {object} A graph node with at least a point (x, y) and a size.
* @return {object} A square: two points (x1, y1), (x2, y2) and height.
*/
pointToSquare: function(n) {
return {
x1: n.x - n.size,
y1: n.y - n.size,
x2: n.x + n.size,
y2: n.y - n.size,
height: n.size * 2
};
},
/**
* Checks whether a rectangle is axis-aligned.
*
* @param {object} A rectangle defined by two points
* (x1, y1) and (x2, y2).
* @return {boolean} True if the rectangle is axis-aligned.
*/
isAxisAligned: function(r) {
return r.x1 === r.x2 || r.y1 === r.y2;
},
/**
* Compute top points of an axis-aligned rectangle. This is useful in
* cases when the rectangle has been rotated (left, right or bottom up) and
* later operations need to know the top points.
*
* @param {object} An axis-aligned rectangle defined by two points
* (x1, y1), (x2, y2) and height.
* @return {object} A rectangle: two points (x1, y1), (x2, y2) and height.
*/
axisAlignedTopPoints: function(r) {
// Basic
if (r.y1 === r.y2 && r.x1 < r.x2)
return r;
// Rotated to right
if (r.x1 === r.x2 && r.y2 > r.y1)
return {
x1: r.x1 - r.height, y1: r.y1,
x2: r.x1, y2: r.y1,
height: r.height
};
// Rotated to left
if (r.x1 === r.x2 && r.y2 < r.y1)
return {
x1: r.x1, y1: r.y2,
x2: r.x2 + r.height, y2: r.y2,
height: r.height
};
// Bottom's up
return {
x1: r.x2, y1: r.y1 - r.height,
x2: r.x1, y2: r.y1 - r.height,
height: r.height
};
},
/**
* Get coordinates of a rectangle's lower left corner from its top points.
*
* @param {object} A rectangle defined by two points (x1, y1) and (x2, y2).
* @return {object} Coordinates of the corner (x, y).
*/
lowerLeftCoor: function(r) {
var width = (
Math.sqrt(
Math.pow(r.x2 - r.x1, 2) +
Math.pow(r.y2 - r.y1, 2)
)
);
return {
x: r.x1 - (r.y2 - r.y1) * r.height / width,
y: r.y1 + (r.x2 - r.x1) * r.height / width
};
},
/**
* Get coordinates of a rectangle's lower right corner from its top points
* and its lower left corner.
*
* @param {object} A rectangle defined by two points (x1, y1) and (x2, y2).
* @param {object} A corner's coordinates (x, y).
* @return {object} Coordinates of the corner (x, y).
*/
lowerRightCoor: function(r, llc) {
return {
x: llc.x - r.x1 + r.x2,
y: llc.y - r.y1 + r.y2
};
},
/**
* Get the coordinates of all the corners of a rectangle from its top point.
*
* @param {object} A rectangle defined by two points (x1, y1) and (x2, y2).
* @return {array} An array of the four corners' coordinates (x, y).
*/
rectangleCorners: function(r) {
var llc = this.lowerLeftCoor(r),
lrc = this.lowerRightCoor(r, llc);
return [
{x: r.x1, y: r.y1},
{x: r.x2, y: r.y2},
{x: llc.x, y: llc.y},
{x: lrc.x, y: lrc.y}
];
},
/**
* Split a square defined by its boundaries into four.
*
* @param {object} Boundaries of the square (x, y, width, height).
* @return {array} An array containing the four new squares, themselves
* defined by an array of their four corners (x, y).
*/
splitSquare: function(b) {
return [
[
{x: b.x, y: b.y},
{x: b.x + b.width / 2, y: b.y},
{x: b.x, y: b.y + b.height / 2},
{x: b.x + b.width / 2, y: b.y + b.height / 2}
],
[
{x: b.x + b.width / 2, y: b.y},
{x: b.x + b.width, y: b.y},
{x: b.x + b.width / 2, y: b.y + b.height / 2},
{x: b.x + b.width, y: b.y + b.height / 2}
],
[
{x: b.x, y: b.y + b.height / 2},
{x: b.x + b.width / 2, y: b.y + b.height / 2},
{x: b.x, y: b.y + b.height},
{x: b.x + b.width / 2, y: b.y + b.height}
],
[
{x: b.x + b.width / 2, y: b.y + b.height / 2},
{x: b.x + b.width, y: b.y + b.height / 2},
{x: b.x + b.width / 2, y: b.y + b.height},
{x: b.x + b.width, y: b.y + b.height}
]
];
},
/**
* Compute the four axis between corners of rectangle A and corners of
* rectangle B. This is needed later to check an eventual collision.
*
* @param {array} An array of rectangle A's four corners (x, y).
* @param {array} An array of rectangle B's four corners (x, y).
* @return {array} An array of four axis defined by their coordinates (x,y).
*/
axis: function(c1, c2) {
return [
{x: c1[1].x - c1[0].x, y: c1[1].y - c1[0].y},
{x: c1[1].x - c1[3].x, y: c1[1].y - c1[3].y},
{x: c2[0].x - c2[2].x, y: c2[0].y - c2[2].y},
{x: c2[0].x - c2[1].x, y: c2[0].y - c2[1].y}
];
},
/**
* Project a rectangle's corner on an axis.
*
* @param {object} Coordinates of a corner (x, y).
* @param {object} Coordinates of an axis (x, y).
* @return {object} The projection defined by coordinates (x, y).
*/
projection: function(c, a) {
var l = (
(c.x * a.x + c.y * a.y) /
(Math.pow(a.x, 2) + Math.pow(a.y, 2))
);
return {
x: l * a.x,
y: l * a.y
};
},
/**
* Check whether two rectangles collide on one particular axis.
*
* @param {object} An axis' coordinates (x, y).
* @param {array} Rectangle A's corners.
* @param {array} Rectangle B's corners.
* @return {boolean} True if the rectangles collide on the axis.
*/
axisCollision: function(a, c1, c2) {
var sc1 = [],
sc2 = [];
for (var ci = 0; ci < 4; ci++) {
var p1 = this.projection(c1[ci], a),
p2 = this.projection(c2[ci], a);
sc1.push(p1.x * a.x + p1.y * a.y);
sc2.push(p2.x * a.x + p2.y * a.y);
}
var maxc1 = Math.max.apply(Math, sc1),
maxc2 = Math.max.apply(Math, sc2),
minc1 = Math.min.apply(Math, sc1),
minc2 = Math.min.apply(Math, sc2);
return (minc2 <= maxc1 && maxc2 >= minc1);
},
/**
* Check whether two rectangles collide on each one of their four axis. If
* all axis collide, then the two rectangles do collide on the plane.
*
* @param {array} Rectangle A's corners.
* @param {array} Rectangle B's corners.
* @return {boolean} True if the rectangles collide.
*/
collision: function(c1, c2) {
var axis = this.axis(c1, c2),
col = true;
for (var i = 0; i < 4; i++)
col = col && this.axisCollision(axis[i], c1, c2);
return col;
}
};
/**
* Quad Functions
* ------------
*
* The Quadtree functions themselves.
* For each of those functions, we consider that in a splitted quad, the
* index of each node is the following:
* 0: top left
* 1: top right
* 2: bottom left
* 3: bottom right
*
* Moreover, the hereafter quad's philosophy is to consider that if an element
* collides with more than one nodes, this element belongs to each of the
* nodes it collides with where other would let it lie on a higher node.
*/
/**
* Get the index of the node containing the point in the quad
*
* @param {object} point A point defined by coordinates (x, y).
* @param {object} quadBounds Boundaries of the quad (x, y, width, heigth).
* @return {integer} The index of the node containing the point.
*/
function _quadIndex(point, quadBounds) {
var xmp = quadBounds.x + quadBounds.width / 2,
ymp = quadBounds.y + quadBounds.height / 2,
top = (point.y < ymp),
left = (point.x < xmp);
if (top) {
if (left)
return 0;
else
return 1;
}
else {
if (left)
return 2;
else
return 3;
}
}
/**
* Get a list of indexes of nodes containing an axis-aligned rectangle
*
* @param {object} rectangle A rectangle defined by two points (x1, y1),
* (x2, y2) and height.
* @param {array} quadCorners An array of the quad nodes' corners.
* @return {array} An array of indexes containing one to
* four integers.
*/
function _quadIndexes(rectangle, quadCorners) {
var indexes = [];
// Iterating through quads
for (var i = 0; i < 4; i++)
if ((rectangle.x2 >= quadCorners[i][0].x) &&
(rectangle.x1 <= quadCorners[i][1].x) &&
(rectangle.y1 + rectangle.height >= quadCorners[i][0].y) &&
(rectangle.y1 <= quadCorners[i][2].y))
indexes.push(i);
return indexes;
}
/**
* Get a list of indexes of nodes containing a non-axis-aligned rectangle
*
* @param {array} corners An array containing each corner of the
* rectangle defined by its coordinates (x, y).
* @param {array} quadCorners An array of the quad nodes' corners.
* @return {array} An array of indexes containing one to
* four integers.
*/
function _quadCollision(corners, quadCorners) {
var indexes = [];
// Iterating through quads
for (var i = 0; i < 4; i++)
if (_geom.collision(corners, quadCorners[i]))
indexes.push(i);
return indexes;
}
/**
* Subdivide a quad by creating a node at a precise index. The function does
* not generate all four nodes not to potentially create unused nodes.
*
* @param {integer} index The index of the node to create.
* @param {object} quad The quad object to subdivide.
* @return {object} A new quad representing the node created.
*/
function _quadSubdivide(index, quad) {
var next = quad.level + 1,
subw = Math.round(quad.bounds.width / 2),
subh = Math.round(quad.bounds.height / 2),
qx = Math.round(quad.bounds.x),
qy = Math.round(quad.bounds.y),
x,
y;
switch (index) {
case 0:
x = qx;
y = qy;
break;
case 1:
x = qx + subw;
y = qy;
break;
case 2:
x = qx;
y = qy + subh;
break;
case 3:
x = qx + subw;
y = qy + subh;
break;
}
return _quadTree(
{x: x, y: y, width: subw, height: subh},
next,
quad.maxElements,
quad.maxLevel
);
}
/**
* Recursively insert an element into the quadtree. Only points
* with size, i.e. axis-aligned squares, may be inserted with this
* method.
*
* @param {object} el The element to insert in the quadtree.
* @param {object} sizedPoint A sized point defined by two top points
* (x1, y1), (x2, y2) and height.
* @param {object} quad The quad in which to insert the element.
* @return {undefined} The function does not return anything.
*/
function _quadInsert(el, sizedPoint, quad) {
if (quad.level < quad.maxLevel) {
// Searching appropriate quads
var indexes = _quadIndexes(sizedPoint, quad.corners);
// Iterating
for (var i = 0, l = indexes.length; i < l; i++) {
// Subdividing if necessary
if (quad.nodes[indexes[i]] === undefined)
quad.nodes[indexes[i]] = _quadSubdivide(indexes[i], quad);
// Recursion
_quadInsert(el, sizedPoint, quad.nodes[indexes[i]]);
}
}
else {
// Pushing the element in a leaf node
quad.elements.push(el);
}
}
/**
* Recursively retrieve every elements held by the node containing the
* searched point.
*
* @param {object} point The searched point (x, y).
* @param {object} quad The searched quad.
* @return {array} An array of elements contained in the relevant
* node.
*/
function _quadRetrievePoint(point, quad) {
if (quad.level < quad.maxLevel) {
var index = _quadIndex(point, quad.bounds);
// If node does not exist we return an empty list
if (quad.nodes[index] !== undefined) {
return _quadRetrievePoint(point, quad.nodes[index]);
}
else {
return [];
}
}
else {
return quad.elements;
}
}
/**
* Recursively retrieve every elements contained within an rectangular area
* that may or may not be axis-aligned.
*
* @param {object|array} rectData The searched area defined either by
* an array of four corners (x, y) in
* the case of a non-axis-aligned
* rectangle or an object with two top
* points (x1, y1), (x2, y2) and height.
* @param {object} quad The searched quad.
* @param {function} collisionFunc The collision function used to search
* for node indexes.
* @param {array?} els The retrieved elements.
* @return {array} An array of elements contained in the
* area.
*/
function _quadRetrieveArea(rectData, quad, collisionFunc, els) {
els = els || {};
if (quad.level < quad.maxLevel) {
var indexes = collisionFunc(rectData, quad.corners);
for (var i = 0, l = indexes.length; i < l; i++)
if (quad.nodes[indexes[i]] !== undefined)
_quadRetrieveArea(
rectData,
quad.nodes[indexes[i]],
collisionFunc,
els
);
} else
for (var j = 0, m = quad.elements.length; j < m; j++)
if (els[quad.elements[j].id] === undefined)
els[quad.elements[j].id] = quad.elements[j];
return els;
}
/**
* Creates the quadtree object itself.
*
* @param {object} bounds The boundaries of the quad defined by an
* origin (x, y), width and heigth.
* @param {integer} level The level of the quad in the tree.
* @param {integer} maxElements The max number of element in a leaf node.
* @param {integer} maxLevel The max recursion level of the tree.
* @return {object} The quadtree object.
*/
function _quadTree(bounds, level, maxElements, maxLevel) {
return {
level: level || 0,
bounds: bounds,
corners: _geom.splitSquare(bounds),
maxElements: maxElements || 20,
maxLevel: maxLevel || 4,
elements: [],
nodes: []
};
}
/**
* Sigma Quad Constructor
* ----------------------
*
* The quad API as exposed to sigma.
*/
/**
* The quad core that will become the sigma interface with the quadtree.
*
* property {object} _tree Property holding the quadtree object.
* property {object} _geom Exposition of the _geom namespace for testing.
* property {object} _cache Cache for the area method.
*/
var quad = function() {
this._geom = _geom;
this._tree = null;
this._cache = {
query: false,
result: false
};
};
/**
* Index a graph by inserting its nodes into the quadtree.
*
* @param {array} nodes An array of nodes to index.
* @param {object} params An object of parameters with at least the quad
* bounds.
* @return {object} The quadtree object.
*
* Parameters:
* ----------
* bounds: {object} boundaries of the quad defined by its origin (x, y)
* width and heigth.
* prefix: {string?} a prefix for node geometric attributes.
* maxElements: {integer?} the max number of elements in a leaf node.
* maxLevel: {integer?} the max recursion level of the tree.
*/
quad.prototype.index = function(nodes, params) {
// Enforcing presence of boundaries
if (!params.bounds)
throw 'sigma.classes.quad.index: bounds information not given.';
// Prefix
var prefix = params.prefix || '';
// Building the tree
this._tree = _quadTree(
params.bounds,
0,
params.maxElements,
params.maxLevel
);
// Inserting graph nodes into the tree
for (var i = 0, l = nodes.length; i < l; i++) {
// Inserting node
_quadInsert(
nodes[i],
_geom.pointToSquare({
x: nodes[i][prefix + 'x'],
y: nodes[i][prefix + 'y'],
size: nodes[i][prefix + 'size']
}),
this._tree
);
}
// Reset cache:
this._cache = {
query: false,
result: false
};
// remove?
return this._tree;
};
/**
* Retrieve every graph nodes held by the quadtree node containing the
* searched point.
*
* @param {number} x of the point.
* @param {number} y of the point.
* @return {array} An array of nodes retrieved.
*/
quad.prototype.point = function(x, y) {
return this._tree ?
_quadRetrievePoint({x: x, y: y}, this._tree) || [] :
[];
};
/**
* Retrieve every graph nodes within a rectangular area. The methods keep the
* last area queried in cache for optimization reason and will act differently
* for the same reason if the area is axis-aligned or not.
*
* @param {object} A rectangle defined by two top points (x1, y1), (x2, y2)
* and height.
* @return {array} An array of nodes retrieved.
*/
quad.prototype.area = function(rect) {
var serialized = JSON.stringify(rect),
collisionFunc,
rectData;
// Returning cache?
if (this._cache.query === serialized)
return this._cache.result;
// Axis aligned ?
if (_geom.isAxisAligned(rect)) {
collisionFunc = _quadIndexes;
rectData = _geom.axisAlignedTopPoints(rect);
}
else {
collisionFunc = _quadCollision;
rectData = _geom.rectangleCorners(rect);
}
// Retrieving nodes
var nodes = this._tree ?
_quadRetrieveArea(
rectData,
this._tree,
collisionFunc
) :
[];
// Object to array
var nodesArray = [];
for (var i in nodes)
nodesArray.push(nodes[i]);
// Caching
this._cache.query = serialized;
this._cache.result = nodesArray;
return nodesArray;
};
/**
* EXPORT:
* *******
*/
if (typeof this.sigma !== 'undefined') {
this.sigma.classes = this.sigma.classes || {};
this.sigma.classes.quad = quad;
} else if (typeof exports !== 'undefined') {
if (typeof module !== 'undefined' && module.exports)
exports = module.exports = quad;
exports.quad = quad;
} else
this.quad = quad;
}).call(this);
;(function(undefined) {
'use strict';
/**
* Sigma Quadtree Module for edges
* ===============================
*
* Author: Sébastien Heymann,
* from the quad of Guillaume Plique (Yomguithereal)
* Version: 0.2
*/
/**
* Quad Geometric Operations
* -------------------------
*
* A useful batch of geometric operations used by the quadtree.
*/
var _geom = {
/**
* Transforms a graph node with x, y and size into an
* axis-aligned square.
*
* @param {object} A graph node with at least a point (x, y) and a size.
* @return {object} A square: two points (x1, y1), (x2, y2) and height.
*/
pointToSquare: function(n) {
return {
x1: n.x - n.size,
y1: n.y - n.size,
x2: n.x + n.size,
y2: n.y - n.size,
height: n.size * 2
};
},
/**
* Transforms a graph edge with x1, y1, x2, y2 and size into an
* axis-aligned square.
*
* @param {object} A graph edge with at least two points
* (x1, y1), (x2, y2) and a size.
* @return {object} A square: two points (x1, y1), (x2, y2) and height.
*/
lineToSquare: function(e) {
if (e.y1 < e.y2) {
// (e.x1, e.y1) on top
if (e.x1 < e.x2) {
// (e.x1, e.y1) on left
return {
x1: e.x1 - e.size,
y1: e.y1 - e.size,
x2: e.x2 + e.size,
y2: e.y1 - e.size,
height: e.y2 - e.y1 + e.size * 2
};
}
// (e.x1, e.y1) on right
return {
x1: e.x2 - e.size,
y1: e.y1 - e.size,
x2: e.x1 + e.size,
y2: e.y1 - e.size,
height: e.y2 - e.y1 + e.size * 2
};
}
// (e.x2, e.y2) on top
if (e.x1 < e.x2) {
// (e.x1, e.y1) on left
return {
x1: e.x1 - e.size,
y1: e.y2 - e.size,
x2: e.x2 + e.size,
y2: e.y2 - e.size,
height: e.y1 - e.y2 + e.size * 2
};
}
// (e.x2, e.y2) on right
return {
x1: e.x2 - e.size,
y1: e.y2 - e.size,
x2: e.x1 + e.size,
y2: e.y2 - e.size,
height: e.y1 - e.y2 + e.size * 2
};
},
/**
* Transforms a graph edge of type 'curve' with x1, y1, x2, y2,
* control point and size into an axis-aligned square.
*
* @param {object} e A graph edge with at least two points
* (x1, y1), (x2, y2) and a size.
* @param {object} cp A control point (x,y).
* @return {object} A square: two points (x1, y1), (x2, y2) and height.
*/
quadraticCurveToSquare: function(e, cp) {
var pt = sigma.utils.getPointOnQuadraticCurve(
0.5,
e.x1,
e.y1,
e.x2,
e.y2,
cp.x,
cp.y
);
// Bounding box of the two points and the point at the middle of the
// curve:
var minX = Math.min(e.x1, e.x2, pt.x),
maxX = Math.max(e.x1, e.x2, pt.x),
minY = Math.min(e.y1, e.y2, pt.y),
maxY = Math.max(e.y1, e.y2, pt.y);
return {
x1: minX - e.size,
y1: minY - e.size,
x2: maxX + e.size,
y2: minY - e.size,
height: maxY - minY + e.size * 2
};
},
/**
* Transforms a graph self loop into an axis-aligned square.
*
* @param {object} n A graph node with a point (x, y) and a size.
* @return {object} A square: two points (x1, y1), (x2, y2) and height.
*/
selfLoopToSquare: function(n) {
// Fitting to the curve is too costly, we compute a larger bounding box
// using the control points:
var cp = sigma.utils.getSelfLoopControlPoints(n.x, n.y, n.size);
// Bounding box of the point and the two control points:
var minX = Math.min(n.x, cp.x1, cp.x2),
maxX = Math.max(n.x, cp.x1, cp.x2),
minY = Math.min(n.y, cp.y1, cp.y2),
maxY = Math.max(n.y, cp.y1, cp.y2);
return {
x1: minX - n.size,
y1: minY - n.size,
x2: maxX + n.size,
y2: minY - n.size,
height: maxY - minY + n.size * 2
};
},
/**
* Checks whether a rectangle is axis-aligned.
*
* @param {object} A rectangle defined by two points
* (x1, y1) and (x2, y2).
* @return {boolean} True if the rectangle is axis-aligned.
*/
isAxisAligned: function(r) {
return r.x1 === r.x2 || r.y1 === r.y2;
},
/**
* Compute top points of an axis-aligned rectangle. This is useful in
* cases when the rectangle has been rotated (left, right or bottom up) and
* later operations need to know the top points.
*
* @param {object} An axis-aligned rectangle defined by two points
* (x1, y1), (x2, y2) and height.
* @return {object} A rectangle: two points (x1, y1), (x2, y2) and height.
*/
axisAlignedTopPoints: function(r) {
// Basic
if (r.y1 === r.y2 && r.x1 < r.x2)
return r;
// Rotated to right
if (r.x1 === r.x2 && r.y2 > r.y1)
return {
x1: r.x1 - r.height, y1: r.y1,
x2: r.x1, y2: r.y1,
height: r.height
};
// Rotated to left
if (r.x1 === r.x2 && r.y2 < r.y1)
return {
x1: r.x1, y1: r.y2,
x2: r.x2 + r.height, y2: r.y2,
height: r.height
};
// Bottom's up
return {
x1: r.x2, y1: r.y1 - r.height,
x2: r.x1, y2: r.y1 - r.height,
height: r.height
};
},
/**
* Get coordinates of a rectangle's lower left corner from its top points.
*
* @param {object} A rectangle defined by two points (x1, y1) and (x2, y2).
* @return {object} Coordinates of the corner (x, y).
*/
lowerLeftCoor: function(r) {
var width = (
Math.sqrt(
Math.pow(r.x2 - r.x1, 2) +
Math.pow(r.y2 - r.y1, 2)
)
);
return {
x: r.x1 - (r.y2 - r.y1) * r.height / width,
y: r.y1 + (r.x2 - r.x1) * r.height / width
};
},
/**
* Get coordinates of a rectangle's lower right corner from its top points
* and its lower left corner.
*
* @param {object} A rectangle defined by two points (x1, y1) and (x2, y2).
* @param {object} A corner's coordinates (x, y).
* @return {object} Coordinates of the corner (x, y).
*/
lowerRightCoor: function(r, llc) {
return {
x: llc.x - r.x1 + r.x2,
y: llc.y - r.y1 + r.y2
};
},
/**
* Get the coordinates of all the corners of a rectangle from its top point.
*
* @param {object} A rectangle defined by two points (x1, y1) and (x2, y2).
* @return {array} An array of the four corners' coordinates (x, y).
*/
rectangleCorners: function(r) {
var llc = this.lowerLeftCoor(r),
lrc = this.lowerRightCoor(r, llc);
return [
{x: r.x1, y: r.y1},
{x: r.x2, y: r.y2},
{x: llc.x, y: llc.y},
{x: lrc.x, y: lrc.y}
];
},
/**
* Split a square defined by its boundaries into four.
*
* @param {object} Boundaries of the square (x, y, width, height).
* @return {array} An array containing the four new squares, themselves
* defined by an array of their four corners (x, y).
*/
splitSquare: function(b) {
return [
[
{x: b.x, y: b.y},
{x: b.x + b.width / 2, y: b.y},
{x: b.x, y: b.y + b.height / 2},
{x: b.x + b.width / 2, y: b.y + b.height / 2}
],
[
{x: b.x + b.width / 2, y: b.y},
{x: b.x + b.width, y: b.y},
{x: b.x + b.width / 2, y: b.y + b.height / 2},
{x: b.x + b.width, y: b.y + b.height / 2}
],
[
{x: b.x, y: b.y + b.height / 2},
{x: b.x + b.width / 2, y: b.y + b.height / 2},
{x: b.x, y: b.y + b.height},
{x: b.x + b.width / 2, y: b.y + b.height}
],
[
{x: b.x + b.width / 2, y: b.y + b.height / 2},
{x: b.x + b.width, y: b.y + b.height / 2},
{x: b.x + b.width / 2, y: b.y + b.height},
{x: b.x + b.width, y: b.y + b.height}
]
];
},
/**
* Compute the four axis between corners of rectangle A and corners of
* rectangle B. This is needed later to check an eventual collision.
*
* @param {array} An array of rectangle A's four corners (x, y).
* @param {array} An array of rectangle B's four corners (x, y).
* @return {array} An array of four axis defined by their coordinates (x,y).
*/
axis: function(c1, c2) {
return [
{x: c1[1].x - c1[0].x, y: c1[1].y - c1[0].y},
{x: c1[1].x - c1[3].x, y: c1[1].y - c1[3].y},
{x: c2[0].x - c2[2].x, y: c2[0].y - c2[2].y},
{x: c2[0].x - c2[1].x, y: c2[0].y - c2[1].y}
];
},
/**
* Project a rectangle's corner on an axis.
*
* @param {object} Coordinates of a corner (x, y).
* @param {object} Coordinates of an axis (x, y).
* @return {object} The projection defined by coordinates (x, y).
*/
projection: function(c, a) {
var l = (
(c.x * a.x + c.y * a.y) /
(Math.pow(a.x, 2) + Math.pow(a.y, 2))
);
return {
x: l * a.x,
y: l * a.y
};
},
/**
* Check whether two rectangles collide on one particular axis.
*
* @param {object} An axis' coordinates (x, y).
* @param {array} Rectangle A's corners.
* @param {array} Rectangle B's corners.
* @return {boolean} True if the rectangles collide on the axis.
*/
axisCollision: function(a, c1, c2) {
var sc1 = [],
sc2 = [];
for (var ci = 0; ci < 4; ci++) {
var p1 = this.projection(c1[ci], a),
p2 = this.projection(c2[ci], a);
sc1.push(p1.x * a.x + p1.y * a.y);
sc2.push(p2.x * a.x + p2.y * a.y);
}
var maxc1 = Math.max.apply(Math, sc1),
maxc2 = Math.max.apply(Math, sc2),
minc1 = Math.min.apply(Math, sc1),
minc2 = Math.min.apply(Math, sc2);
return (minc2 <= maxc1 && maxc2 >= minc1);
},
/**
* Check whether two rectangles collide on each one of their four axis. If
* all axis collide, then the two rectangles do collide on the plane.
*
* @param {array} Rectangle A's corners.
* @param {array} Rectangle B's corners.
* @return {boolean} True if the rectangles collide.
*/
collision: function(c1, c2) {
var axis = this.axis(c1, c2),
col = true;
for (var i = 0; i < 4; i++)
col = col && this.axisCollision(axis[i], c1, c2);
return col;
}
};
/**
* Quad Functions
* ------------
*
* The Quadtree functions themselves.
* For each of those functions, we consider that in a splitted quad, the
* index of each node is the following:
* 0: top left
* 1: top right
* 2: bottom left
* 3: bottom right
*
* Moreover, the hereafter quad's philosophy is to consider that if an element
* collides with more than one nodes, this element belongs to each of the
* nodes it collides with where other would let it lie on a higher node.
*/
/**
* Get the index of the node containing the point in the quad
*
* @param {object} point A point defined by coordinates (x, y).
* @param {object} quadBounds Boundaries of the quad (x, y, width, heigth).
* @return {integer} The index of the node containing the point.
*/
function _quadIndex(point, quadBounds) {
var xmp = quadBounds.x + quadBounds.width / 2,
ymp = quadBounds.y + quadBounds.height / 2,
top = (point.y < ymp),
left = (point.x < xmp);
if (top) {
if (left)
return 0;
else
return 1;
}
else {
if (left)
return 2;
else
return 3;
}
}
/**
* Get a list of indexes of nodes containing an axis-aligned rectangle
*
* @param {object} rectangle A rectangle defined by two points (x1, y1),
* (x2, y2) and height.
* @param {array} quadCorners An array of the quad nodes' corners.
* @return {array} An array of indexes containing one to
* four integers.
*/
function _quadIndexes(rectangle, quadCorners) {
var indexes = [];
// Iterating through quads
for (var i = 0; i < 4; i++)
if ((rectangle.x2 >= quadCorners[i][0].x) &&
(rectangle.x1 <= quadCorners[i][1].x) &&
(rectangle.y1 + rectangle.height >= quadCorners[i][0].y) &&
(rectangle.y1 <= quadCorners[i][2].y))
indexes.push(i);
return indexes;
}
/**
* Get a list of indexes of nodes containing a non-axis-aligned rectangle
*
* @param {array} corners An array containing each corner of the
* rectangle defined by its coordinates (x, y).
* @param {array} quadCorners An array of the quad nodes' corners.
* @return {array} An array of indexes containing one to
* four integers.
*/
function _quadCollision(corners, quadCorners) {
var indexes = [];
// Iterating through quads
for (var i = 0; i < 4; i++)
if (_geom.collision(corners, quadCorners[i]))
indexes.push(i);
return indexes;
}
/**
* Subdivide a quad by creating a node at a precise index. The function does
* not generate all four nodes not to potentially create unused nodes.
*
* @param {integer} index The index of the node to create.
* @param {object} quad The quad object to subdivide.
* @return {object} A new quad representing the node created.
*/
function _quadSubdivide(index, quad) {
var next = quad.level + 1,
subw = Math.round(quad.bounds.width / 2),
subh = Math.round(quad.bounds.height / 2),
qx = Math.round(quad.bounds.x),
qy = Math.round(quad.bounds.y),
x,
y;
switch (index) {
case 0:
x = qx;
y = qy;
break;
case 1:
x = qx + subw;
y = qy;
break;
case 2:
x = qx;
y = qy + subh;
break;
case 3:
x = qx + subw;
y = qy + subh;
break;
}
return _quadTree(
{x: x, y: y, width: subw, height: subh},
next,
quad.maxElements,
quad.maxLevel
);
}
/**
* Recursively insert an element into the quadtree. Only points
* with size, i.e. axis-aligned squares, may be inserted with this
* method.
*
* @param {object} el The element to insert in the quadtree.
* @param {object} sizedPoint A sized point defined by two top points
* (x1, y1), (x2, y2) and height.
* @param {object} quad The quad in which to insert the element.
* @return {undefined} The function does not return anything.
*/
function _quadInsert(el, sizedPoint, quad) {
if (quad.level < quad.maxLevel) {
// Searching appropriate quads
var indexes = _quadIndexes(sizedPoint, quad.corners);
// Iterating
for (var i = 0, l = indexes.length; i < l; i++) {
// Subdividing if necessary
if (quad.nodes[indexes[i]] === undefined)
quad.nodes[indexes[i]] = _quadSubdivide(indexes[i], quad);
// Recursion
_quadInsert(el, sizedPoint, quad.nodes[indexes[i]]);
}
}
else {
// Pushing the element in a leaf node
quad.elements.push(el);
}
}
/**
* Recursively retrieve every elements held by the node containing the
* searched point.
*
* @param {object} point The searched point (x, y).
* @param {object} quad The searched quad.
* @return {array} An array of elements contained in the relevant
* node.
*/
function _quadRetrievePoint(point, quad) {
if (quad.level < quad.maxLevel) {
var index = _quadIndex(point, quad.bounds);
// If node does not exist we return an empty list
if (quad.nodes[index] !== undefined) {
return _quadRetrievePoint(point, quad.nodes[index]);
}
else {
return [];
}
}
else {
return quad.elements;
}
}
/**
* Recursively retrieve every elements contained within an rectangular area
* that may or may not be axis-aligned.
*
* @param {object|array} rectData The searched area defined either by
* an array of four corners (x, y) in
* the case of a non-axis-aligned
* rectangle or an object with two top
* points (x1, y1), (x2, y2) and height.
* @param {object} quad The searched quad.
* @param {function} collisionFunc The collision function used to search
* for node indexes.
* @param {array?} els The retrieved elements.
* @return {array} An array of elements contained in the
* area.
*/
function _quadRetrieveArea(rectData, quad, collisionFunc, els) {
els = els || {};
if (quad.level < quad.maxLevel) {
var indexes = collisionFunc(rectData, quad.corners);
for (var i = 0, l = indexes.length; i < l; i++)
if (quad.nodes[indexes[i]] !== undefined)
_quadRetrieveArea(
rectData,
quad.nodes[indexes[i]],
collisionFunc,
els
);
} else
for (var j = 0, m = quad.elements.length; j < m; j++)
if (els[quad.elements[j].id] === undefined)
els[quad.elements[j].id] = quad.elements[j];
return els;
}
/**
* Creates the quadtree object itself.
*
* @param {object} bounds The boundaries of the quad defined by an
* origin (x, y), width and heigth.
* @param {integer} level The level of the quad in the tree.
* @param {integer} maxElements The max number of element in a leaf node.
* @param {integer} maxLevel The max recursion level of the tree.
* @return {object} The quadtree object.
*/
function _quadTree(bounds, level, maxElements, maxLevel) {
return {
level: level || 0,
bounds: bounds,
corners: _geom.splitSquare(bounds),
maxElements: maxElements || 40,
maxLevel: maxLevel || 8,
elements: [],
nodes: []
};
}
/**
* Sigma Quad Constructor
* ----------------------
*
* The edgequad API as exposed to sigma.
*/
/**
* The edgequad core that will become the sigma interface with the quadtree.
*
* property {object} _tree Property holding the quadtree object.
* property {object} _geom Exposition of the _geom namespace for testing.
* property {object} _cache Cache for the area method.
* property {boolean} _enabled Can index and retreive elements.
*/
var edgequad = function() {
this._geom = _geom;
this._tree = null;
this._cache = {
query: false,
result: false
};
this._enabled = true;
};
/**
* Index a graph by inserting its edges into the quadtree.
*
* @param {object} graph A graph instance.
* @param {object} params An object of parameters with at least the quad
* bounds.
* @return {object} The quadtree object.
*
* Parameters:
* ----------
* bounds: {object} boundaries of the quad defined by its origin (x, y)
* width and heigth.
* prefix: {string?} a prefix for edge geometric attributes.
* maxElements: {integer?} the max number of elements in a leaf node.
* maxLevel: {integer?} the max recursion level of the tree.
*/
edgequad.prototype.index = function(graph, params) {
if (!this._enabled)
return this._tree;
// Enforcing presence of boundaries
if (!params.bounds)
throw 'sigma.classes.edgequad.index: bounds information not given.';
// Prefix
var prefix = params.prefix || '',
cp,
source,
target,
n,
e;
// Building the tree
this._tree = _quadTree(
params.bounds,
0,
params.maxElements,
params.maxLevel
);
var edges = graph.edges();
// Inserting graph edges into the tree
for (var i = 0, l = edges.length; i < l; i++) {
source = graph.nodes(edges[i].source);
target = graph.nodes(edges[i].target);
e = {
x1: source[prefix + 'x'],
y1: source[prefix + 'y'],
x2: target[prefix + 'x'],
y2: target[prefix + 'y'],
size: edges[i][prefix + 'size'] || 0
};
// Inserting edge
if (edges[i].type === 'curve' || edges[i].type === 'curvedArrow') {
if (source.id === target.id) {
n = {
x: source[prefix + 'x'],
y: source[prefix + 'y'],
size: source[prefix + 'size'] || 0
};
_quadInsert(
edges[i],
_geom.selfLoopToSquare(n),
this._tree);
}
else {
cp = sigma.utils.getQuadraticControlPoint(e.x1, e.y1, e.x2, e.y2);
_quadInsert(
edges[i],
_geom.quadraticCurveToSquare(e, cp),
this._tree);
}
}
else {
_quadInsert(
edges[i],
_geom.lineToSquare(e),
this._tree);
}
}
// Reset cache:
this._cache = {
query: false,
result: false
};
// remove?
return this._tree;
};
/**
* Retrieve every graph edges held by the quadtree node containing the
* searched point.
*
* @param {number} x of the point.
* @param {number} y of the point.
* @return {array} An array of edges retrieved.
*/
edgequad.prototype.point = function(x, y) {
if (!this._enabled)
return [];
return this._tree ?
_quadRetrievePoint({x: x, y: y}, this._tree) || [] :
[];
};
/**
* Retrieve every graph edges within a rectangular area. The methods keep the
* last area queried in cache for optimization reason and will act differently
* for the same reason if the area is axis-aligned or not.
*
* @param {object} A rectangle defined by two top points (x1, y1), (x2, y2)
* and height.
* @return {array} An array of edges retrieved.
*/
edgequad.prototype.area = function(rect) {
if (!this._enabled)
return [];
var serialized = JSON.stringify(rect),
collisionFunc,
rectData;
// Returning cache?
if (this._cache.query === serialized)
return this._cache.result;
// Axis aligned ?
if (_geom.isAxisAligned(rect)) {
collisionFunc = _quadIndexes;
rectData = _geom.axisAlignedTopPoints(rect);
}
else {
collisionFunc = _quadCollision;
rectData = _geom.rectangleCorners(rect);
}
// Retrieving edges
var edges = this._tree ?
_quadRetrieveArea(
rectData,
this._tree,
collisionFunc
) :
[];
// Object to array
var edgesArray = [];
for (var i in edges)
edgesArray.push(edges[i]);
// Caching
this._cache.query = serialized;
this._cache.result = edgesArray;
return edgesArray;
};
/**
* EXPORT:
* *******
*/
if (typeof this.sigma !== 'undefined') {
this.sigma.classes = this.sigma.classes || {};
this.sigma.classes.edgequad = edgequad;
} else if (typeof exports !== 'undefined') {
if (typeof module !== 'undefined' && module.exports)
exports = module.exports = edgequad;
exports.edgequad = edgequad;
} else
this.edgequad = edgequad;
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.captors');
/**
* The user inputs default captor. It deals with mouse events, keyboards
* events and touch events.
*
* @param {DOMElement} target The DOM element where the listeners will be
* bound.
* @param {camera} camera The camera related to the target.
* @param {configurable} settings The settings function.
* @return {sigma.captor} The fresh new captor instance.
*/
sigma.captors.mouse = function(target, camera, settings) {
var _self = this,
_target = target,
_camera = camera,
_settings = settings,
// CAMERA MANAGEMENT:
// ******************
// The camera position when the user starts dragging:
_startCameraX,
_startCameraY,
_startCameraAngle,
// The latest stage position:
_lastCameraX,
_lastCameraY,
_lastCameraAngle,
_lastCameraRatio,
// MOUSE MANAGEMENT:
// *****************
// The mouse position when the user starts dragging:
_startMouseX,
_startMouseY,
_isMouseDown,
_isMoving,
_hasDragged,
_downStartTime,
_movingTimeoutId;
sigma.classes.dispatcher.extend(this);
sigma.utils.doubleClick(_target, 'click', _doubleClickHandler);
_target.addEventListener('DOMMouseScroll', _wheelHandler, false);
_target.addEventListener('mousewheel', _wheelHandler, false);
_target.addEventListener('mousemove', _moveHandler, false);
_target.addEventListener('mousedown', _downHandler, false);
_target.addEventListener('click', _clickHandler, false);
_target.addEventListener('mouseout', _outHandler, false);
document.addEventListener('mouseup', _upHandler, false);
/**
* This method unbinds every handlers that makes the captor work.
*/
this.kill = function() {
sigma.utils.unbindDoubleClick(_target, 'click');
_target.removeEventListener('DOMMouseScroll', _wheelHandler);
_target.removeEventListener('mousewheel', _wheelHandler);
_target.removeEventListener('mousemove', _moveHandler);
_target.removeEventListener('mousedown', _downHandler);
_target.removeEventListener('click', _clickHandler);
_target.removeEventListener('mouseout', _outHandler);
document.removeEventListener('mouseup', _upHandler);
};
// MOUSE EVENTS:
// *************
/**
* The handler listening to the 'move' mouse event. It will effectively
* drag the graph.
*
* @param {event} e A mouse event.
*/
function _moveHandler(e) {
var x,
y,
pos;
// Dispatch event:
if (_settings('mouseEnabled')) {
_self.dispatchEvent('mousemove',
sigma.utils.mouseCoords(e));
if (_isMouseDown) {
_isMoving = true;
_hasDragged = true;
if (_movingTimeoutId)
clearTimeout(_movingTimeoutId);
_movingTimeoutId = setTimeout(function() {
_isMoving = false;
}, _settings('dragTimeout'));
sigma.misc.animation.killAll(_camera);
_camera.isMoving = true;
pos = _camera.cameraPosition(
sigma.utils.getX(e) - _startMouseX,
sigma.utils.getY(e) - _startMouseY,
true
);
x = _startCameraX - pos.x;
y = _startCameraY - pos.y;
if (x !== _camera.x || y !== _camera.y) {
_lastCameraX = _camera.x;
_lastCameraY = _camera.y;
_camera.goTo({
x: x,
y: y
});
}
if (e.preventDefault)
e.preventDefault();
else
e.returnValue = false;
e.stopPropagation();
return false;
}
}
}
/**
* The handler listening to the 'up' mouse event. It will stop dragging the
* graph.
*
* @param {event} e A mouse event.
*/
function _upHandler(e) {
if (_settings('mouseEnabled') && _isMouseDown) {
_isMouseDown = false;
if (_movingTimeoutId)
clearTimeout(_movingTimeoutId);
_camera.isMoving = false;
var x = sigma.utils.getX(e),
y = sigma.utils.getY(e);
if (_isMoving) {
sigma.misc.animation.killAll(_camera);
sigma.misc.animation.camera(
_camera,
{
x: _camera.x +
_settings('mouseInertiaRatio') * (_camera.x - _lastCameraX),
y: _camera.y +
_settings('mouseInertiaRatio') * (_camera.y - _lastCameraY)
},
{
easing: 'quadraticOut',
duration: _settings('mouseInertiaDuration')
}
);
} else if (
_startMouseX !== x ||
_startMouseY !== y
)
_camera.goTo({
x: _camera.x,
y: _camera.y
});
_self.dispatchEvent('mouseup',
sigma.utils.mouseCoords(e));
// Update _isMoving flag:
_isMoving = false;
}
}
/**
* The handler listening to the 'down' mouse event. It will start observing
* the mouse position for dragging the graph.
*
* @param {event} e A mouse event.
*/
function _downHandler(e) {
if (_settings('mouseEnabled')) {
_startCameraX = _camera.x;
_startCameraY = _camera.y;
_lastCameraX = _camera.x;
_lastCameraY = _camera.y;
_startMouseX = sigma.utils.getX(e);
_startMouseY = sigma.utils.getY(e);
_hasDragged = false;
_downStartTime = (new Date()).getTime();
switch (e.which) {
case 2:
// Middle mouse button pressed
// Do nothing.
break;
case 3:
// Right mouse button pressed
_self.dispatchEvent('rightclick',
sigma.utils.mouseCoords(e, _startMouseX, _startMouseY));
break;
// case 1:
default:
// Left mouse button pressed
_isMouseDown = true;
_self.dispatchEvent('mousedown',
sigma.utils.mouseCoords(e, _startMouseX, _startMouseY));
}
}
}
/**
* The handler listening to the 'out' mouse event. It will just redispatch
* the event.
*
* @param {event} e A mouse event.
*/
function _outHandler(e) {
if (_settings('mouseEnabled'))
_self.dispatchEvent('mouseout');
}
/**
* The handler listening to the 'click' mouse event. It will redispatch the
* click event, but with normalized X and Y coordinates.
*
* @param {event} e A mouse event.
*/
function _clickHandler(e) {
if (_settings('mouseEnabled')) {
var event = sigma.utils.mouseCoords(e);
event.isDragging =
(((new Date()).getTime() - _downStartTime) > 100) && _hasDragged;
_self.dispatchEvent('click', event);
}
if (e.preventDefault)
e.preventDefault();
else
e.returnValue = false;
e.stopPropagation();
return false;
}
/**
* The handler listening to the double click custom event. It will
* basically zoom into the graph.
*
* @param {event} e A mouse event.
*/
function _doubleClickHandler(e) {
var pos,
ratio,
animation;
if (_settings('mouseEnabled')) {
ratio = 1 / _settings('doubleClickZoomingRatio');
_self.dispatchEvent('doubleclick',
sigma.utils.mouseCoords(e, _startMouseX, _startMouseY));
if (_settings('doubleClickEnabled')) {
pos = _camera.cameraPosition(
sigma.utils.getX(e) - sigma.utils.getCenter(e).x,
sigma.utils.getY(e) - sigma.utils.getCenter(e).y,
true
);
animation = {
duration: _settings('doubleClickZoomDuration')
};
sigma.utils.zoomTo(_camera, pos.x, pos.y, ratio, animation);
}
if (e.preventDefault)
e.preventDefault();
else
e.returnValue = false;
e.stopPropagation();
return false;
}
}
/**
* The handler listening to the 'wheel' mouse event. It will basically zoom
* in or not into the graph.
*
* @param {event} e A mouse event.
*/
function _wheelHandler(e) {
var pos,
ratio,
animation,
wheelDelta = sigma.utils.getDelta(e);
if (_settings('mouseEnabled') && _settings('mouseWheelEnabled') && wheelDelta !== 0) {
ratio = wheelDelta > 0 ?
1 / _settings('zoomingRatio') :
_settings('zoomingRatio');
pos = _camera.cameraPosition(
sigma.utils.getX(e) - sigma.utils.getCenter(e).x,
sigma.utils.getY(e) - sigma.utils.getCenter(e).y,
true
);
animation = {
duration: _settings('mouseZoomDuration')
};
sigma.utils.zoomTo(_camera, pos.x, pos.y, ratio, animation);
if (e.preventDefault)
e.preventDefault();
else
e.returnValue = false;
e.stopPropagation();
return false;
}
}
};
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.captors');
/**
* The user inputs default captor. It deals with mouse events, keyboards
* events and touch events.
*
* @param {DOMElement} target The DOM element where the listeners will be
* bound.
* @param {camera} camera The camera related to the target.
* @param {configurable} settings The settings function.
* @return {sigma.captor} The fresh new captor instance.
*/
sigma.captors.touch = function(target, camera, settings) {
var _self = this,
_target = target,
_camera = camera,
_settings = settings,
// CAMERA MANAGEMENT:
// ******************
// The camera position when the user starts dragging:
_startCameraX,
_startCameraY,
_startCameraAngle,
_startCameraRatio,
// The latest stage position:
_lastCameraX,
_lastCameraY,
_lastCameraAngle,
_lastCameraRatio,
// TOUCH MANAGEMENT:
// *****************
// Touches that are down:
_downTouches = [],
_startTouchX0,
_startTouchY0,
_startTouchX1,
_startTouchY1,
_startTouchAngle,
_startTouchDistance,
_touchMode,
_isMoving,
_doubleTap,
_movingTimeoutId;
sigma.classes.dispatcher.extend(this);
sigma.utils.doubleClick(_target, 'touchstart', _doubleTapHandler);
_target.addEventListener('touchstart', _handleStart, false);
_target.addEventListener('touchend', _handleLeave, false);
_target.addEventListener('touchcancel', _handleLeave, false);
_target.addEventListener('touchleave', _handleLeave, false);
_target.addEventListener('touchmove', _handleMove, false);
function position(e) {
var offset = sigma.utils.getOffset(_target);
return {
x: e.pageX - offset.left,
y: e.pageY - offset.top
};
}
/**
* This method unbinds every handlers that makes the captor work.
*/
this.kill = function() {
sigma.utils.unbindDoubleClick(_target, 'touchstart');
_target.addEventListener('touchstart', _handleStart);
_target.addEventListener('touchend', _handleLeave);
_target.addEventListener('touchcancel', _handleLeave);
_target.addEventListener('touchleave', _handleLeave);
_target.addEventListener('touchmove', _handleMove);
};
// TOUCH EVENTS:
// *************
/**
* The handler listening to the 'touchstart' event. It will set the touch
* mode ("_touchMode") and start observing the user touch moves.
*
* @param {event} e A touch event.
*/
function _handleStart(e) {
if (_settings('touchEnabled')) {
var x0,
x1,
y0,
y1,
pos0,
pos1;
_downTouches = e.touches;
switch (_downTouches.length) {
case 1:
_camera.isMoving = true;
_touchMode = 1;
_startCameraX = _camera.x;
_startCameraY = _camera.y;
_lastCameraX = _camera.x;
_lastCameraY = _camera.y;
pos0 = position(_downTouches[0]);
_startTouchX0 = pos0.x;
_startTouchY0 = pos0.y;
break;
case 2:
_camera.isMoving = true;
_touchMode = 2;
pos0 = position(_downTouches[0]);
pos1 = position(_downTouches[1]);
x0 = pos0.x;
y0 = pos0.y;
x1 = pos1.x;
y1 = pos1.y;
_lastCameraX = _camera.x;
_lastCameraY = _camera.y;
_startCameraAngle = _camera.angle;
_startCameraRatio = _camera.ratio;
_startCameraX = _camera.x;
_startCameraY = _camera.y;
_startTouchX0 = x0;
_startTouchY0 = y0;
_startTouchX1 = x1;
_startTouchY1 = y1;
_startTouchAngle = Math.atan2(
_startTouchY1 - _startTouchY0,
_startTouchX1 - _startTouchX0
);
_startTouchDistance = Math.sqrt(
(_startTouchY1 - _startTouchY0) *
(_startTouchY1 - _startTouchY0) +
(_startTouchX1 - _startTouchX0) *
(_startTouchX1 - _startTouchX0)
);
e.preventDefault();
return false;
}
}
}
/**
* The handler listening to the 'touchend', 'touchcancel' and 'touchleave'
* event. It will update the touch mode if there are still at least one
* finger, and stop dragging else.
*
* @param {event} e A touch event.
*/
function _handleLeave(e) {
if (_settings('touchEnabled')) {
_downTouches = e.touches;
var inertiaRatio = _settings('touchInertiaRatio');
if (_movingTimeoutId) {
_isMoving = false;
clearTimeout(_movingTimeoutId);
}
switch (_touchMode) {
case 2:
if (e.touches.length === 1) {
_handleStart(e);
e.preventDefault();
break;
}
/* falls through */
case 1:
_camera.isMoving = false;
_self.dispatchEvent('stopDrag');
if (_isMoving) {
_doubleTap = false;
sigma.misc.animation.camera(
_camera,
{
x: _camera.x +
inertiaRatio * (_camera.x - _lastCameraX),
y: _camera.y +
inertiaRatio * (_camera.y - _lastCameraY)
},
{
easing: 'quadraticOut',
duration: _settings('touchInertiaDuration')
}
);
}
_isMoving = false;
_touchMode = 0;
break;
}
}
}
/**
* The handler listening to the 'touchmove' event. It will effectively drag
* the graph, and eventually zooms and turn it if the user is using two
* fingers.
*
* @param {event} e A touch event.
*/
function _handleMove(e) {
if (!_doubleTap && _settings('touchEnabled')) {
var x0,
x1,
y0,
y1,
cos,
sin,
end,
pos0,
pos1,
diff,
start,
dAngle,
dRatio,
newStageX,
newStageY,
newStageRatio,
newStageAngle;
_downTouches = e.touches;
_isMoving = true;
if (_movingTimeoutId)
clearTimeout(_movingTimeoutId);
_movingTimeoutId = setTimeout(function() {
_isMoving = false;
}, _settings('dragTimeout'));
switch (_touchMode) {
case 1:
pos0 = position(_downTouches[0]);
x0 = pos0.x;
y0 = pos0.y;
diff = _camera.cameraPosition(
x0 - _startTouchX0,
y0 - _startTouchY0,
true
);
newStageX = _startCameraX - diff.x;
newStageY = _startCameraY - diff.y;
if (newStageX !== _camera.x || newStageY !== _camera.y) {
_lastCameraX = _camera.x;
_lastCameraY = _camera.y;
_camera.goTo({
x: newStageX,
y: newStageY
});
_self.dispatchEvent('mousemove',
sigma.utils.mouseCoords(e, pos0.x, pos0.y));
_self.dispatchEvent('drag');
}
break;
case 2:
pos0 = position(_downTouches[0]);
pos1 = position(_downTouches[1]);
x0 = pos0.x;
y0 = pos0.y;
x1 = pos1.x;
y1 = pos1.y;
start = _camera.cameraPosition(
(_startTouchX0 + _startTouchX1) / 2 -
sigma.utils.getCenter(e).x,
(_startTouchY0 + _startTouchY1) / 2 -
sigma.utils.getCenter(e).y,
true
);
end = _camera.cameraPosition(
(x0 + x1) / 2 - sigma.utils.getCenter(e).x,
(y0 + y1) / 2 - sigma.utils.getCenter(e).y,
true
);
dAngle = Math.atan2(y1 - y0, x1 - x0) - _startTouchAngle;
dRatio = Math.sqrt(
(y1 - y0) * (y1 - y0) + (x1 - x0) * (x1 - x0)
) / _startTouchDistance;
// Translation:
x0 = start.x;
y0 = start.y;
// Homothetic transformation:
newStageRatio = _startCameraRatio / dRatio;
x0 = x0 * dRatio;
y0 = y0 * dRatio;
// Rotation:
newStageAngle = _startCameraAngle - dAngle;
cos = Math.cos(-dAngle);
sin = Math.sin(-dAngle);
x1 = x0 * cos + y0 * sin;
y1 = y0 * cos - x0 * sin;
x0 = x1;
y0 = y1;
// Finalize:
newStageX = x0 - end.x + _startCameraX;
newStageY = y0 - end.y + _startCameraY;
if (
newStageRatio !== _camera.ratio ||
newStageAngle !== _camera.angle ||
newStageX !== _camera.x ||
newStageY !== _camera.y
) {
_lastCameraX = _camera.x;
_lastCameraY = _camera.y;
_lastCameraAngle = _camera.angle;
_lastCameraRatio = _camera.ratio;
_camera.goTo({
x: newStageX,
y: newStageY,
angle: newStageAngle,
ratio: newStageRatio
});
_self.dispatchEvent('drag');
}
break;
}
e.preventDefault();
return false;
}
}
/**
* The handler listening to the double tap custom event. It will
* basically zoom into the graph.
*
* @param {event} e A touch event.
*/
function _doubleTapHandler(e) {
var pos,
ratio,
animation;
if (e.touches && e.touches.length === 1 && _settings('touchEnabled')) {
_doubleTap = true;
ratio = 1 / _settings('doubleClickZoomingRatio');
pos = position(e.touches[0]);
_self.dispatchEvent('doubleclick',
sigma.utils.mouseCoords(e, pos.x, pos.y));
if (_settings('doubleClickEnabled')) {
pos = _camera.cameraPosition(
pos.x - sigma.utils.getCenter(e).x,
pos.y - sigma.utils.getCenter(e).y,
true
);
animation = {
duration: _settings('doubleClickZoomDuration'),
onComplete: function() {
_doubleTap = false;
}
};
sigma.utils.zoomTo(_camera, pos.x, pos.y, ratio, animation);
}
if (e.preventDefault)
e.preventDefault();
else
e.returnValue = false;
e.stopPropagation();
return false;
}
}
};
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
if (typeof conrad === 'undefined')
throw 'conrad is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.renderers');
/**
* This function is the constructor of the canvas sigma's renderer.
*
* @param {sigma.classes.graph} graph The graph to render.
* @param {sigma.classes.camera} camera The camera.
* @param {configurable} settings The sigma instance settings
* function.
* @param {object} object The options object.
* @return {sigma.renderers.canvas} The renderer instance.
*/
sigma.renderers.canvas = function(graph, camera, settings, options) {
if (typeof options !== 'object')
throw 'sigma.renderers.canvas: Wrong arguments.';
if (!(options.container instanceof HTMLElement))
throw 'Container not found.';
var k,
i,
l,
a,
fn,
self = this;
sigma.classes.dispatcher.extend(this);
// Initialize main attributes:
Object.defineProperty(this, 'conradId', {
value: sigma.utils.id()
});
this.graph = graph;
this.camera = camera;
this.contexts = {};
this.domElements = {};
this.options = options;
this.container = this.options.container;
this.settings = (
typeof options.settings === 'object' &&
options.settings
) ?
settings.embedObjects(options.settings) :
settings;
// Node indexes:
this.nodesOnScreen = [];
this.edgesOnScreen = [];
// Conrad related attributes:
this.jobs = {};
// Find the prefix:
this.options.prefix = 'renderer' + this.conradId + ':';
// Initialize the DOM elements:
if (
!this.settings('batchEdgesDrawing')
) {
this.initDOM('canvas', 'scene');
this.contexts.edges = this.contexts.scene;
this.contexts.nodes = this.contexts.scene;
this.contexts.labels = this.contexts.scene;
} else {
this.initDOM('canvas', 'edges');
this.initDOM('canvas', 'scene');
this.contexts.nodes = this.contexts.scene;
this.contexts.labels = this.contexts.scene;
}
this.initDOM('canvas', 'mouse');
this.contexts.hover = this.contexts.mouse;
// Initialize captors:
this.captors = [];
a = this.options.captors || [sigma.captors.mouse, sigma.captors.touch];
for (i = 0, l = a.length; i < l; i++) {
fn = typeof a[i] === 'function' ? a[i] : sigma.captors[a[i]];
this.captors.push(
new fn(
this.domElements.mouse,
this.camera,
this.settings
)
);
}
// Deal with sigma events:
sigma.misc.bindEvents.call(this, this.options.prefix);
sigma.misc.drawHovers.call(this, this.options.prefix);
this.resize(false);
};
/**
* This method renders the graph on the canvases.
*
* @param {?object} options Eventually an object of options.
* @return {sigma.renderers.canvas} Returns the instance itself.
*/
sigma.renderers.canvas.prototype.render = function(options) {
options = options || {};
var a,
i,
k,
l,
o,
id,
end,
job,
start,
edges,
renderers,
rendererType,
batchSize,
tempGCO,
index = {},
graph = this.graph,
nodes = this.graph.nodes,
prefix = this.options.prefix || '',
drawEdges = this.settings(options, 'drawEdges'),
drawNodes = this.settings(options, 'drawNodes'),
drawLabels = this.settings(options, 'drawLabels'),
drawEdgeLabels = this.settings(options, 'drawEdgeLabels'),
embedSettings = this.settings.embedObjects(options, {
prefix: this.options.prefix
});
// Call the resize function:
this.resize(false);
// Check the 'hideEdgesOnMove' setting:
if (this.settings(options, 'hideEdgesOnMove'))
if (this.camera.isAnimated || this.camera.isMoving)
drawEdges = false;
// Apply the camera's view:
this.camera.applyView(
undefined,
this.options.prefix,
{
width: this.width,
height: this.height
}
);
// Clear canvases:
this.clear();
// Kill running jobs:
for (k in this.jobs)
if (conrad.hasJob(k))
conrad.killJob(k);
// Find which nodes are on screen:
this.edgesOnScreen = [];
this.nodesOnScreen = this.camera.quadtree.area(
this.camera.getRectangle(this.width, this.height)
);
for (a = this.nodesOnScreen, i = 0, l = a.length; i < l; i++)
index[a[i].id] = a[i];
// Draw edges:
// - If settings('batchEdgesDrawing') is true, the edges are displayed per
// batches. If not, they are drawn in one frame.
if (drawEdges) {
// First, let's identify which edges to draw. To do this, we just keep
// every edges that have at least one extremity displayed according to
// the quadtree and the "hidden" attribute. We also do not keep hidden
// edges.
for (a = graph.edges(), i = 0, l = a.length; i < l; i++) {
o = a[i];
if (
(index[o.source] || index[o.target]) &&
(!o.hidden && !nodes(o.source).hidden && !nodes(o.target).hidden)
)
this.edgesOnScreen.push(o);
}
// If the "batchEdgesDrawing" settings is true, edges are batched:
if (this.settings(options, 'batchEdgesDrawing')) {
id = 'edges_' + this.conradId;
batchSize = embedSettings('canvasEdgesBatchSize');
edges = this.edgesOnScreen;
l = edges.length;
start = 0;
end = Math.min(edges.length, start + batchSize);
job = function() {
tempGCO = this.contexts.edges.globalCompositeOperation;
this.contexts.edges.globalCompositeOperation = 'destination-over';
renderers = sigma.canvas.edges;
for (i = start; i < end; i++) {
o = edges[i];
(renderers[
o.type || this.settings(options, 'defaultEdgeType')
] || renderers.def)(
o,
graph.nodes(o.source),
graph.nodes(o.target),
this.contexts.edges,
embedSettings
);
}
// Draw edge labels:
if (drawEdgeLabels) {
renderers = sigma.canvas.edges.labels;
for (i = start; i < end; i++) {
o = edges[i];
if (!o.hidden)
(renderers[
o.type || this.settings(options, 'defaultEdgeType')
] || renderers.def)(
o,
graph.nodes(o.source),
graph.nodes(o.target),
this.contexts.labels,
embedSettings
);
}
}
// Restore original globalCompositeOperation:
this.contexts.edges.globalCompositeOperation = tempGCO;
// Catch job's end:
if (end === edges.length) {
delete this.jobs[id];
return false;
}
start = end + 1;
end = Math.min(edges.length, start + batchSize);
return true;
};
this.jobs[id] = job;
conrad.addJob(id, job.bind(this));
// If not, they are drawn in one frame:
} else {
renderers = sigma.canvas.edges;
for (a = this.edgesOnScreen, i = 0, l = a.length; i < l; i++) {
o = a[i];
(renderers[
o.type || this.settings(options, 'defaultEdgeType')
] || renderers.def)(
o,
graph.nodes(o.source),
graph.nodes(o.target),
this.contexts.edges,
embedSettings
);
}
// Draw edge labels:
// - No batching
if (drawEdgeLabels) {
renderers = sigma.canvas.edges.labels;
for (a = this.edgesOnScreen, i = 0, l = a.length; i < l; i++)
if (!a[i].hidden)
(renderers[
a[i].type || this.settings(options, 'defaultEdgeType')
] || renderers.def)(
a[i],
graph.nodes(a[i].source),
graph.nodes(a[i].target),
this.contexts.labels,
embedSettings
);
}
}
}
// Draw nodes:
// - No batching
if (drawNodes) {
renderers = sigma.canvas.nodes;
for (a = this.nodesOnScreen, i = 0, l = a.length; i < l; i++)
if (!a[i].hidden)
(renderers[
a[i].type || this.settings(options, 'defaultNodeType')
] || renderers.def)(
a[i],
this.contexts.nodes,
embedSettings
);
}
// Draw labels:
// - No batching
if (drawLabels) {
renderers = sigma.canvas.labels;
for (a = this.nodesOnScreen, i = 0, l = a.length; i < l; i++)
if (!a[i].hidden)
(renderers[
a[i].type || this.settings(options, 'defaultNodeType')
] || renderers.def)(
a[i],
this.contexts.labels,
embedSettings
);
}
this.dispatchEvent('render');
return this;
};
/**
* This method creates a DOM element of the specified type, switches its
* position to "absolute", references it to the domElements attribute, and
* finally appends it to the container.
*
* @param {string} tag The label tag.
* @param {string} id The id of the element (to store it in "domElements").
*/
sigma.renderers.canvas.prototype.initDOM = function(tag, id) {
var dom = document.createElement(tag);
dom.style.position = 'absolute';
dom.setAttribute('class', 'sigma-' + id);
this.domElements[id] = dom;
this.container.appendChild(dom);
if (tag.toLowerCase() === 'canvas')
this.contexts[id] = dom.getContext('2d');
};
/**
* This method resizes each DOM elements in the container and stores the new
* dimensions. Then, it renders the graph.
*
* @param {?number} width The new width of the container.
* @param {?number} height The new height of the container.
* @return {sigma.renderers.canvas} Returns the instance itself.
*/
sigma.renderers.canvas.prototype.resize = function(w, h) {
var k,
oldWidth = this.width,
oldHeight = this.height,
pixelRatio = sigma.utils.getPixelRatio();
if (w !== undefined && h !== undefined) {
this.width = w;
this.height = h;
} else {
this.width = this.container.offsetWidth;
this.height = this.container.offsetHeight;
w = this.width;
h = this.height;
}
if (oldWidth !== this.width || oldHeight !== this.height) {
for (k in this.domElements) {
this.domElements[k].style.width = w + 'px';
this.domElements[k].style.height = h + 'px';
if (this.domElements[k].tagName.toLowerCase() === 'canvas') {
this.domElements[k].setAttribute('width', (w * pixelRatio) + 'px');
this.domElements[k].setAttribute('height', (h * pixelRatio) + 'px');
if (pixelRatio !== 1)
this.contexts[k].scale(pixelRatio, pixelRatio);
}
}
}
return this;
};
/**
* This method clears each canvas.
*
* @return {sigma.renderers.canvas} Returns the instance itself.
*/
sigma.renderers.canvas.prototype.clear = function() {
for (var k in this.contexts) {
this.contexts[k].clearRect(0, 0, this.width, this.height);
}
return this;
};
/**
* This method kills contexts and other attributes.
*/
sigma.renderers.canvas.prototype.kill = function() {
var k,
captor;
// Kill captors:
while ((captor = this.captors.pop()))
captor.kill();
delete this.captors;
// Kill contexts:
for (k in this.domElements) {
this.domElements[k].parentNode.removeChild(this.domElements[k]);
delete this.domElements[k];
delete this.contexts[k];
}
delete this.domElements;
delete this.contexts;
};
/**
* The labels, nodes and edges renderers are stored in the three following
* objects. When an element is drawn, its type will be checked and if a
* renderer with the same name exists, it will be used. If not found, the
* default renderer will be used instead.
*
* They are stored in different files, in the "./canvas" folder.
*/
sigma.utils.pkg('sigma.canvas.nodes');
sigma.utils.pkg('sigma.canvas.edges');
sigma.utils.pkg('sigma.canvas.labels');
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.renderers');
/**
* This function is the constructor of the canvas sigma's renderer.
*
* @param {sigma.classes.graph} graph The graph to render.
* @param {sigma.classes.camera} camera The camera.
* @param {configurable} settings The sigma instance settings
* function.
* @param {object} object The options object.
* @return {sigma.renderers.canvas} The renderer instance.
*/
sigma.renderers.webgl = function(graph, camera, settings, options) {
if (typeof options !== 'object')
throw 'sigma.renderers.webgl: Wrong arguments.';
if (!(options.container instanceof HTMLElement))
throw 'Container not found.';
var k,
i,
l,
a,
fn,
_self = this;
sigma.classes.dispatcher.extend(this);
// Conrad related attributes:
this.jobs = {};
Object.defineProperty(this, 'conradId', {
value: sigma.utils.id()
});
// Initialize main attributes:
this.graph = graph;
this.camera = camera;
this.contexts = {};
this.domElements = {};
this.options = options;
this.container = this.options.container;
this.settings = (
typeof options.settings === 'object' &&
options.settings
) ?
settings.embedObjects(options.settings) :
settings;
// Find the prefix:
this.options.prefix = this.camera.readPrefix;
// Initialize programs hash
Object.defineProperty(this, 'nodePrograms', {
value: {}
});
Object.defineProperty(this, 'edgePrograms', {
value: {}
});
Object.defineProperty(this, 'nodeFloatArrays', {
value: {}
});
Object.defineProperty(this, 'edgeFloatArrays', {
value: {}
});
Object.defineProperty(this, 'edgeIndicesArrays', {
value: {}
});
// Initialize the DOM elements:
if (this.settings(options, 'batchEdgesDrawing')) {
this.initDOM('canvas', 'edges', true);
this.initDOM('canvas', 'nodes', true);
} else {
this.initDOM('canvas', 'scene', true);
this.contexts.nodes = this.contexts.scene;
this.contexts.edges = this.contexts.scene;
}
this.initDOM('canvas', 'labels');
this.initDOM('canvas', 'mouse');
this.contexts.hover = this.contexts.mouse;
// Initialize captors:
this.captors = [];
a = this.options.captors || [sigma.captors.mouse, sigma.captors.touch];
for (i = 0, l = a.length; i < l; i++) {
fn = typeof a[i] === 'function' ? a[i] : sigma.captors[a[i]];
this.captors.push(
new fn(
this.domElements.mouse,
this.camera,
this.settings
)
);
}
// Deal with sigma events:
sigma.misc.bindEvents.call(this, this.camera.prefix);
sigma.misc.drawHovers.call(this, this.camera.prefix);
this.resize();
};
/**
* This method will generate the nodes and edges float arrays. This step is
* separated from the "render" method, because to keep WebGL efficient, since
* all the camera and middlewares are modelised as matrices and they do not
* require the float arrays to be regenerated.
*
* Basically, when the user moves the camera or applies some specific linear
* transformations, this process step will be skipped, and the "render"
* method will efficiently refresh the rendering.
*
* And when the user modifies the graph colors or positions (applying a new
* layout or filtering the colors, for instance), this "process" step will be
* required to regenerate the float arrays.
*
* @return {sigma.renderers.webgl} Returns the instance itself.
*/
sigma.renderers.webgl.prototype.process = function() {
var a,
i,
l,
k,
type,
renderer,
graph = this.graph,
options = sigma.utils.extend(options, this.options),
defaultEdgeType = this.settings(options, 'defaultEdgeType'),
defaultNodeType = this.settings(options, 'defaultNodeType');
// Empty float arrays:
for (k in this.nodeFloatArrays)
delete this.nodeFloatArrays[k];
for (k in this.edgeFloatArrays)
delete this.edgeFloatArrays[k];
for (k in this.edgeIndicesArrays)
delete this.edgeIndicesArrays[k];
// Sort edges and nodes per types:
for (a = graph.edges(), i = 0, l = a.length; i < l; i++) {
type = a[i].type || defaultEdgeType;
k = (type && sigma.webgl.edges[type]) ? type : 'def';
if (!this.edgeFloatArrays[k])
this.edgeFloatArrays[k] = {
edges: []
};
this.edgeFloatArrays[k].edges.push(a[i]);
}
for (a = graph.nodes(), i = 0, l = a.length; i < l; i++) {
type = a[i].type || defaultNodeType;
k = (type && sigma.webgl.nodes[type]) ? type : 'def';
if (!this.nodeFloatArrays[k])
this.nodeFloatArrays[k] = {
nodes: []
};
this.nodeFloatArrays[k].nodes.push(a[i]);
}
// Push edges:
for (k in this.edgeFloatArrays) {
renderer = sigma.webgl.edges[k];
a = this.edgeFloatArrays[k].edges;
// Creating the necessary arrays
this.edgeFloatArrays[k].array = new Float32Array(
a.length * renderer.POINTS * renderer.ATTRIBUTES
);
for (i = 0, l = a.length; i < l; i++) {
// Just check that the edge and both its extremities are visible:
if (
!a[i].hidden &&
!graph.nodes(a[i].source).hidden &&
!graph.nodes(a[i].target).hidden
)
renderer.addEdge(
a[i],
graph.nodes(a[i].source),
graph.nodes(a[i].target),
this.edgeFloatArrays[k].array,
i * renderer.POINTS * renderer.ATTRIBUTES,
options.prefix,
this.settings
);
}
if (typeof renderer.computeIndices === 'function')
this.edgeIndicesArrays[k] = renderer.computeIndices(
this.edgeFloatArrays[k].array
);
}
// Push nodes:
for (k in this.nodeFloatArrays) {
renderer = sigma.webgl.nodes[k];
a = this.nodeFloatArrays[k].nodes;
// Creating the necessary arrays
this.nodeFloatArrays[k].array = new Float32Array(
a.length * renderer.POINTS * renderer.ATTRIBUTES
);
for (i = 0, l = a.length; i < l; i++) {
if (!this.nodeFloatArrays[k].array)
this.nodeFloatArrays[k].array = new Float32Array(
a.length * renderer.POINTS * renderer.ATTRIBUTES
);
// Just check that the edge and both its extremities are visible:
if (
!a[i].hidden
)
renderer.addNode(
a[i],
this.nodeFloatArrays[k].array,
i * renderer.POINTS * renderer.ATTRIBUTES,
options.prefix,
this.settings
);
}
}
return this;
};
/**
* This method renders the graph. It basically calls each program (and
* generate them if they do not exist yet) to render nodes and edges, batched
* per renderer.
*
* As in the canvas renderer, it is possible to display edges, nodes and / or
* labels in batches, to make the whole thing way more scalable.
*
* @param {?object} params Eventually an object of options.
* @return {sigma.renderers.webgl} Returns the instance itself.
*/
sigma.renderers.webgl.prototype.render = function(params) {
var a,
i,
l,
k,
o,
program,
renderer,
self = this,
graph = this.graph,
nodesGl = this.contexts.nodes,
edgesGl = this.contexts.edges,
matrix = this.camera.getMatrix(),
options = sigma.utils.extend(params, this.options),
drawLabels = this.settings(options, 'drawLabels'),
drawEdges = this.settings(options, 'drawEdges'),
drawNodes = this.settings(options, 'drawNodes');
// Call the resize function:
this.resize(false);
// Check the 'hideEdgesOnMove' setting:
if (this.settings(options, 'hideEdgesOnMove'))
if (this.camera.isAnimated || this.camera.isMoving)
drawEdges = false;
// Clear canvases:
this.clear();
// Translate matrix to [width/2, height/2]:
matrix = sigma.utils.matrices.multiply(
matrix,
sigma.utils.matrices.translation(this.width / 2, this.height / 2)
);
// Kill running jobs:
for (k in this.jobs)
if (conrad.hasJob(k))
conrad.killJob(k);
if (drawEdges) {
if (this.settings(options, 'batchEdgesDrawing'))
(function() {
var a,
k,
i,
id,
job,
arr,
end,
start,
indices,
renderer,
batchSize,
currentProgram;
id = 'edges_' + this.conradId;
batchSize = this.settings(options, 'webglEdgesBatchSize');
a = Object.keys(this.edgeFloatArrays);
if (!a.length)
return;
i = 0;
renderer = sigma.webgl.edges[a[i]];
arr = this.edgeFloatArrays[a[i]].array;
indices = this.edgeIndicesArrays[a[i]];
start = 0;
end = Math.min(
start + batchSize * renderer.POINTS,
arr.length / renderer.ATTRIBUTES
);
job = function() {
// Check program:
if (!this.edgePrograms[a[i]])
this.edgePrograms[a[i]] = renderer.initProgram(edgesGl);
if (start < end) {
edgesGl.useProgram(this.edgePrograms[a[i]]);
renderer.render(
edgesGl,
this.edgePrograms[a[i]],
arr,
{
settings: this.settings,
matrix: matrix,
width: this.width,
height: this.height,
ratio: this.camera.ratio,
scalingRatio: this.settings(
options,
'webglOversamplingRatio'
),
start: start,
count: end - start,
indicesData: indices
}
);
}
// Catch job's end:
if (
end >= arr.length / renderer.ATTRIBUTES &&
i === a.length - 1
) {
delete this.jobs[id];
return false;
}
if (end >= arr.length / renderer.ATTRIBUTES) {
i++;
arr = this.edgeFloatArrays[a[i]].array;
renderer = sigma.webgl.edges[a[i]];
start = 0;
end = Math.min(
start + batchSize * renderer.POINTS,
arr.length / renderer.ATTRIBUTES
);
} else {
start = end;
end = Math.min(
start + batchSize * renderer.POINTS,
arr.length / renderer.ATTRIBUTES
);
}
return true;
};
this.jobs[id] = job;
conrad.addJob(id, job.bind(this));
}).call(this);
else {
for (k in this.edgeFloatArrays) {
renderer = sigma.webgl.edges[k];
// Check program:
if (!this.edgePrograms[k])
this.edgePrograms[k] = renderer.initProgram(edgesGl);
// Render
if (this.edgeFloatArrays[k]) {
edgesGl.useProgram(this.edgePrograms[k]);
renderer.render(
edgesGl,
this.edgePrograms[k],
this.edgeFloatArrays[k].array,
{
settings: this.settings,
matrix: matrix,
width: this.width,
height: this.height,
ratio: this.camera.ratio,
scalingRatio: this.settings(options, 'webglOversamplingRatio'),
indicesData: this.edgeIndicesArrays[k]
}
);
}
}
}
}
if (drawNodes) {
// Enable blending:
nodesGl.blendFunc(nodesGl.SRC_ALPHA, nodesGl.ONE_MINUS_SRC_ALPHA);
nodesGl.enable(nodesGl.BLEND);
for (k in this.nodeFloatArrays) {
renderer = sigma.webgl.nodes[k];
// Check program:
if (!this.nodePrograms[k])
this.nodePrograms[k] = renderer.initProgram(nodesGl);
// Render
if (this.nodeFloatArrays[k]) {
nodesGl.useProgram(this.nodePrograms[k]);
renderer.render(
nodesGl,
this.nodePrograms[k],
this.nodeFloatArrays[k].array,
{
settings: this.settings,
matrix: matrix,
width: this.width,
height: this.height,
ratio: this.camera.ratio,
scalingRatio: this.settings(options, 'webglOversamplingRatio')
}
);
}
}
}
if (drawLabels) {
a = this.camera.quadtree.area(
this.camera.getRectangle(this.width, this.height)
);
// Apply camera view to these nodes:
this.camera.applyView(
undefined,
undefined,
{
nodes: a,
edges: [],
width: this.width,
height: this.height
}
);
o = function(key) {
return self.settings({
prefix: self.camera.prefix
}, key);
};
for (i = 0, l = a.length; i < l; i++)
if (!a[i].hidden)
(
sigma.canvas.labels[
a[i].type ||
this.settings(options, 'defaultNodeType')
] || sigma.canvas.labels.def
)(a[i], this.contexts.labels, o);
}
this.dispatchEvent('render');
return this;
};
/**
* This method creates a DOM element of the specified type, switches its
* position to "absolute", references it to the domElements attribute, and
* finally appends it to the container.
*
* @param {string} tag The label tag.
* @param {string} id The id of the element (to store it in
* "domElements").
* @param {?boolean} webgl Will init the WebGL context if true.
*/
sigma.renderers.webgl.prototype.initDOM = function(tag, id, webgl) {
var gl,
dom = document.createElement(tag),
self = this;
dom.style.position = 'absolute';
dom.setAttribute('class', 'sigma-' + id);
this.domElements[id] = dom;
this.container.appendChild(dom);
if (tag.toLowerCase() === 'canvas') {
this.contexts[id] = dom.getContext(webgl ? 'experimental-webgl' : '2d', {
preserveDrawingBuffer: true
});
// Adding webgl context loss listeners
if (webgl) {
dom.addEventListener('webglcontextlost', function(e) {
e.preventDefault();
}, false);
dom.addEventListener('webglcontextrestored', function(e) {
self.render();
}, false);
}
}
};
/**
* This method resizes each DOM elements in the container and stores the new
* dimensions. Then, it renders the graph.
*
* @param {?number} width The new width of the container.
* @param {?number} height The new height of the container.
* @return {sigma.renderers.webgl} Returns the instance itself.
*/
sigma.renderers.webgl.prototype.resize = function(w, h) {
var k,
oldWidth = this.width,
oldHeight = this.height,
pixelRatio = sigma.utils.getPixelRatio();
if (w !== undefined && h !== undefined) {
this.width = w;
this.height = h;
} else {
this.width = this.container.offsetWidth;
this.height = this.container.offsetHeight;
w = this.width;
h = this.height;
}
if (oldWidth !== this.width || oldHeight !== this.height) {
for (k in this.domElements) {
this.domElements[k].style.width = w + 'px';
this.domElements[k].style.height = h + 'px';
if (this.domElements[k].tagName.toLowerCase() === 'canvas') {
// If simple 2D canvas:
if (this.contexts[k] && this.contexts[k].scale) {
this.domElements[k].setAttribute('width', (w * pixelRatio) + 'px');
this.domElements[k].setAttribute('height', (h * pixelRatio) + 'px');
if (pixelRatio !== 1)
this.contexts[k].scale(pixelRatio, pixelRatio);
} else {
this.domElements[k].setAttribute(
'width',
(w * this.settings('webglOversamplingRatio')) + 'px'
);
this.domElements[k].setAttribute(
'height',
(h * this.settings('webglOversamplingRatio')) + 'px'
);
}
}
}
}
// Scale:
for (k in this.contexts)
if (this.contexts[k] && this.contexts[k].viewport)
this.contexts[k].viewport(
0,
0,
this.width * this.settings('webglOversamplingRatio'),
this.height * this.settings('webglOversamplingRatio')
);
return this;
};
/**
* This method clears each canvas.
*
* @return {sigma.renderers.webgl} Returns the instance itself.
*/
sigma.renderers.webgl.prototype.clear = function() {
this.contexts.labels.clearRect(0, 0, this.width, this.height);
this.contexts.nodes.clear(this.contexts.nodes.COLOR_BUFFER_BIT);
this.contexts.edges.clear(this.contexts.edges.COLOR_BUFFER_BIT);
return this;
};
/**
* This method kills contexts and other attributes.
*/
sigma.renderers.webgl.prototype.kill = function() {
var k,
captor;
// Kill captors:
while ((captor = this.captors.pop()))
captor.kill();
delete this.captors;
// Kill contexts:
for (k in this.domElements) {
this.domElements[k].parentNode.removeChild(this.domElements[k]);
delete this.domElements[k];
delete this.contexts[k];
}
delete this.domElements;
delete this.contexts;
};
/**
* The object "sigma.webgl.nodes" contains the different WebGL node
* renderers. The default one draw nodes as discs. Here are the attributes
* any node renderer must have:
*
* {number} POINTS The number of points required to draw a node.
* {number} ATTRIBUTES The number of attributes needed to draw one point.
* {function} addNode A function that adds a node to the data stack that
* will be given to the buffer. Here is the arguments:
* > {object} node
* > {number} index The node index in the
* nodes array.
* > {Float32Array} data The stack.
* > {object} options Some options.
* {function} render The function that will effectively render the nodes
* into the buffer.
* > {WebGLRenderingContext} gl
* > {WebGLProgram} program
* > {Float32Array} data The stack to give to the
* buffer.
* > {object} params An object containing some
* options, like width,
* height, the camera ratio.
* {function} initProgram The function that will initiate the program, with
* the relevant shaders and parameters. It must return
* the newly created program.
*
* Check sigma.webgl.nodes.def or sigma.webgl.nodes.fast to see how it
* works more precisely.
*/
sigma.utils.pkg('sigma.webgl.nodes');
/**
* The object "sigma.webgl.edges" contains the different WebGL edge
* renderers. The default one draw edges as direct lines. Here are the
* attributes any edge renderer must have:
*
* {number} POINTS The number of points required to draw an edge.
* {number} ATTRIBUTES The number of attributes needed to draw one point.
* {function} addEdge A function that adds an edge to the data stack that
* will be given to the buffer. Here is the arguments:
* > {object} edge
* > {object} source
* > {object} target
* > {Float32Array} data The stack.
* > {object} options Some options.
* {function} render The function that will effectively render the edges
* into the buffer.
* > {WebGLRenderingContext} gl
* > {WebGLProgram} program
* > {Float32Array} data The stack to give to the
* buffer.
* > {object} params An object containing some
* options, like width,
* height, the camera ratio.
* {function} initProgram The function that will initiate the program, with
* the relevant shaders and parameters. It must return
* the newly created program.
*
* Check sigma.webgl.edges.def or sigma.webgl.edges.fast to see how it
* works more precisely.
*/
sigma.utils.pkg('sigma.webgl.edges');
/**
* The object "sigma.canvas.labels" contains the different
* label renderers for the WebGL renderer. Since displaying texts in WebGL is
* definitely painful and since there a way less labels to display than nodes
* or edges, the default renderer simply renders them in a canvas.
*
* A labels renderer is a simple function, taking as arguments the related
* node, the renderer and a settings function.
*/
sigma.utils.pkg('sigma.canvas.labels');
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
if (typeof conrad === 'undefined')
throw 'conrad is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.renderers');
/**
* This function is the constructor of the svg sigma's renderer.
*
* @param {sigma.classes.graph} graph The graph to render.
* @param {sigma.classes.camera} camera The camera.
* @param {configurable} settings The sigma instance settings
* function.
* @param {object} object The options object.
* @return {sigma.renderers.svg} The renderer instance.
*/
sigma.renderers.svg = function(graph, camera, settings, options) {
if (typeof options !== 'object')
throw 'sigma.renderers.svg: Wrong arguments.';
if (!(options.container instanceof HTMLElement))
throw 'Container not found.';
var i,
l,
a,
fn,
self = this;
sigma.classes.dispatcher.extend(this);
// Initialize main attributes:
this.graph = graph;
this.camera = camera;
this.domElements = {
graph: null,
groups: {},
nodes: {},
edges: {},
labels: {},
hovers: {}
};
this.measurementCanvas = null;
this.options = options;
this.container = this.options.container;
this.settings = (
typeof options.settings === 'object' &&
options.settings
) ?
settings.embedObjects(options.settings) :
settings;
// Is the renderer meant to be freestyle?
this.settings('freeStyle', !!this.options.freeStyle);
// SVG xmlns
this.settings('xmlns', 'http://www.w3.org/2000/svg');
// Indexes:
this.nodesOnScreen = [];
this.edgesOnScreen = [];
// Find the prefix:
this.options.prefix = 'renderer' + sigma.utils.id() + ':';
// Initialize the DOM elements
this.initDOM('svg');
// Initialize captors:
this.captors = [];
a = this.options.captors || [sigma.captors.mouse, sigma.captors.touch];
for (i = 0, l = a.length; i < l; i++) {
fn = typeof a[i] === 'function' ? a[i] : sigma.captors[a[i]];
this.captors.push(
new fn(
this.domElements.graph,
this.camera,
this.settings
)
);
}
// Bind resize:
window.addEventListener('resize', function() {
self.resize();
});
// Deal with sigma events:
// TODO: keep an option to override the DOM events?
sigma.misc.bindDOMEvents.call(this, this.domElements.graph);
this.bindHovers(this.options.prefix);
// Resize
this.resize(false);
};
/**
* This method renders the graph on the svg scene.
*
* @param {?object} options Eventually an object of options.
* @return {sigma.renderers.svg} Returns the instance itself.
*/
sigma.renderers.svg.prototype.render = function(options) {
options = options || {};
var a,
i,
k,
e,
l,
o,
source,
target,
start,
edges,
renderers,
subrenderers,
index = {},
graph = this.graph,
nodes = this.graph.nodes,
prefix = this.options.prefix || '',
drawEdges = this.settings(options, 'drawEdges'),
drawNodes = this.settings(options, 'drawNodes'),
drawLabels = this.settings(options, 'drawLabels'),
embedSettings = this.settings.embedObjects(options, {
prefix: this.options.prefix,
forceLabels: this.options.forceLabels
});
// Check the 'hideEdgesOnMove' setting:
if (this.settings(options, 'hideEdgesOnMove'))
if (this.camera.isAnimated || this.camera.isMoving)
drawEdges = false;
// Apply the camera's view:
this.camera.applyView(
undefined,
this.options.prefix,
{
width: this.width,
height: this.height
}
);
// Hiding everything
// TODO: find a more sensible way to perform this operation
this.hideDOMElements(this.domElements.nodes);
this.hideDOMElements(this.domElements.edges);
this.hideDOMElements(this.domElements.labels);
// Find which nodes are on screen
this.edgesOnScreen = [];
this.nodesOnScreen = this.camera.quadtree.area(
this.camera.getRectangle(this.width, this.height)
);
// Node index
for (a = this.nodesOnScreen, i = 0, l = a.length; i < l; i++)
index[a[i].id] = a[i];
// Find which edges are on screen
for (a = graph.edges(), i = 0, l = a.length; i < l; i++) {
o = a[i];
if (
(index[o.source] || index[o.target]) &&
(!o.hidden && !nodes(o.source).hidden && !nodes(o.target).hidden)
)
this.edgesOnScreen.push(o);
}
// Display nodes
//---------------
renderers = sigma.svg.nodes;
subrenderers = sigma.svg.labels;
//-- First we create the nodes which are not already created
if (drawNodes)
for (a = this.nodesOnScreen, i = 0, l = a.length; i < l; i++) {
if (!a[i].hidden && !this.domElements.nodes[a[i].id]) {
// Node
e = (renderers[a[i].type] || renderers.def).create(
a[i],
embedSettings
);
this.domElements.nodes[a[i].id] = e;
this.domElements.groups.nodes.appendChild(e);
// Label
e = (subrenderers[a[i].type] || subrenderers.def).create(
a[i],
embedSettings
);
this.domElements.labels[a[i].id] = e;
this.domElements.groups.labels.appendChild(e);
}
}
//-- Second we update the nodes
if (drawNodes)
for (a = this.nodesOnScreen, i = 0, l = a.length; i < l; i++) {
if (a[i].hidden)
continue;
// Node
(renderers[a[i].type] || renderers.def).update(
a[i],
this.domElements.nodes[a[i].id],
embedSettings
);
// Label
(subrenderers[a[i].type] || subrenderers.def).update(
a[i],
this.domElements.labels[a[i].id],
embedSettings
);
}
// Display edges
//---------------
renderers = sigma.svg.edges;
//-- First we create the edges which are not already created
if (drawEdges)
for (a = this.edgesOnScreen, i = 0, l = a.length; i < l; i++) {
if (!this.domElements.edges[a[i].id]) {
source = nodes(a[i].source);
target = nodes(a[i].target);
e = (renderers[a[i].type] || renderers.def).create(
a[i],
source,
target,
embedSettings
);
this.domElements.edges[a[i].id] = e;
this.domElements.groups.edges.appendChild(e);
}
}
//-- Second we update the edges
if (drawEdges)
for (a = this.edgesOnScreen, i = 0, l = a.length; i < l; i++) {
source = nodes(a[i].source);
target = nodes(a[i].target);
(renderers[a[i].type] || renderers.def).update(
a[i],
this.domElements.edges[a[i].id],
source,
target,
embedSettings
);
}
this.dispatchEvent('render');
return this;
};
/**
* This method creates a DOM element of the specified type, switches its
* position to "absolute", references it to the domElements attribute, and
* finally appends it to the container.
*
* @param {string} tag The label tag.
* @param {string} id The id of the element (to store it in "domElements").
*/
sigma.renderers.svg.prototype.initDOM = function(tag) {
var dom = document.createElementNS(this.settings('xmlns'), tag),
c = this.settings('classPrefix'),
g,
l,
i;
dom.style.position = 'absolute';
dom.setAttribute('class', c + '-svg');
// Setting SVG namespace
dom.setAttribute('xmlns', this.settings('xmlns'));
dom.setAttribute('xmlns:xlink', 'http://www.w3.org/1999/xlink');
dom.setAttribute('version', '1.1');
// Creating the measurement canvas
var canvas = document.createElement('canvas');
canvas.setAttribute('class', c + '-measurement-canvas');
// Appending elements
this.domElements.graph = this.container.appendChild(dom);
// Creating groups
var groups = ['edges', 'nodes', 'labels', 'hovers'];
for (i = 0, l = groups.length; i < l; i++) {
g = document.createElementNS(this.settings('xmlns'), 'g');
g.setAttributeNS(null, 'id', c + '-group-' + groups[i]);
g.setAttributeNS(null, 'class', c + '-group');
this.domElements.groups[groups[i]] =
this.domElements.graph.appendChild(g);
}
// Appending measurement canvas
this.container.appendChild(canvas);
this.measurementCanvas = canvas.getContext('2d');
};
/**
* This method hides a batch of SVG DOM elements.
*
* @param {array} elements An array of elements to hide.
* @param {object} renderer The renderer to use.
* @return {sigma.renderers.svg} Returns the instance itself.
*/
sigma.renderers.svg.prototype.hideDOMElements = function(elements) {
var o,
i;
for (i in elements) {
o = elements[i];
sigma.svg.utils.hide(o);
}
return this;
};
/**
* This method binds the hover events to the renderer.
*
* @param {string} prefix The renderer prefix.
*/
// TODO: add option about whether to display hovers or not
sigma.renderers.svg.prototype.bindHovers = function(prefix) {
var renderers = sigma.svg.hovers,
self = this,
hoveredNode;
function overNode(e) {
var node = e.data.node,
embedSettings = self.settings.embedObjects({
prefix: prefix
});
if (!embedSettings('enableHovering'))
return;
var hover = (renderers[node.type] || renderers.def).create(
node,
self.domElements.nodes[node.id],
self.measurementCanvas,
embedSettings
);
self.domElements.hovers[node.id] = hover;
// Inserting the hover in the dom
self.domElements.groups.hovers.appendChild(hover);
hoveredNode = node;
}
function outNode(e) {
var node = e.data.node,
embedSettings = self.settings.embedObjects({
prefix: prefix
});
if (!embedSettings('enableHovering'))
return;
// Deleting element
self.domElements.groups.hovers.removeChild(
self.domElements.hovers[node.id]
);
hoveredNode = null;
delete self.domElements.hovers[node.id];
// Reinstate
self.domElements.groups.nodes.appendChild(
self.domElements.nodes[node.id]
);
}
// OPTIMIZE: perform a real update rather than a deletion
function update() {
if (!hoveredNode)
return;
var embedSettings = self.settings.embedObjects({
prefix: prefix
});
// Deleting element before update
self.domElements.groups.hovers.removeChild(
self.domElements.hovers[hoveredNode.id]
);
delete self.domElements.hovers[hoveredNode.id];
var hover = (renderers[hoveredNode.type] || renderers.def).create(
hoveredNode,
self.domElements.nodes[hoveredNode.id],
self.measurementCanvas,
embedSettings
);
self.domElements.hovers[hoveredNode.id] = hover;
// Inserting the hover in the dom
self.domElements.groups.hovers.appendChild(hover);
}
// Binding events
this.bind('overNode', overNode);
this.bind('outNode', outNode);
// Update on render
this.bind('render', update);
};
/**
* This method resizes each DOM elements in the container and stores the new
* dimensions. Then, it renders the graph.
*
* @param {?number} width The new width of the container.
* @param {?number} height The new height of the container.
* @return {sigma.renderers.svg} Returns the instance itself.
*/
sigma.renderers.svg.prototype.resize = function(w, h) {
var oldWidth = this.width,
oldHeight = this.height,
pixelRatio = 1;
if (w !== undefined && h !== undefined) {
this.width = w;
this.height = h;
} else {
this.width = this.container.offsetWidth;
this.height = this.container.offsetHeight;
w = this.width;
h = this.height;
}
if (oldWidth !== this.width || oldHeight !== this.height) {
this.domElements.graph.style.width = w + 'px';
this.domElements.graph.style.height = h + 'px';
if (this.domElements.graph.tagName.toLowerCase() === 'svg') {
this.domElements.graph.setAttribute('width', (w * pixelRatio));
this.domElements.graph.setAttribute('height', (h * pixelRatio));
}
}
return this;
};
/**
* The labels, nodes and edges renderers are stored in the three following
* objects. When an element is drawn, its type will be checked and if a
* renderer with the same name exists, it will be used. If not found, the
* default renderer will be used instead.
*
* They are stored in different files, in the "./svg" folder.
*/
sigma.utils.pkg('sigma.svg.nodes');
sigma.utils.pkg('sigma.svg.edges');
sigma.utils.pkg('sigma.svg.labels');
}).call(this);
;(function(global) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.renderers');
// Check if WebGL is enabled:
var canvas,
webgl = !!global.WebGLRenderingContext;
if (webgl) {
canvas = document.createElement('canvas');
try {
webgl = !!(
canvas.getContext('webgl') ||
canvas.getContext('experimental-webgl')
);
} catch (e) {
webgl = false;
}
}
// Copy the good renderer:
sigma.renderers.def = webgl ?
sigma.renderers.webgl :
sigma.renderers.canvas;
})(this);
;(function() {
'use strict';
sigma.utils.pkg('sigma.webgl.nodes');
/**
* This node renderer will display nodes as discs, shaped in triangles with
* the gl.TRIANGLES display mode. So, to be more precise, to draw one node,
* it will store three times the center of node, with the color and the size,
* and an angle indicating which "corner" of the triangle to draw.
*
* The fragment shader does not deal with anti-aliasing, so make sure that
* you deal with it somewhere else in the code (by default, the WebGL
* renderer will oversample the rendering through the webglOversamplingRatio
* value).
*/
sigma.webgl.nodes.def = {
POINTS: 3,
ATTRIBUTES: 5,
addNode: function(node, data, i, prefix, settings) {
var color = sigma.utils.floatColor(
node.color || settings('defaultNodeColor')
);
data[i++] = node[prefix + 'x'];
data[i++] = node[prefix + 'y'];
data[i++] = node[prefix + 'size'];
data[i++] = color;
data[i++] = 0;
data[i++] = node[prefix + 'x'];
data[i++] = node[prefix + 'y'];
data[i++] = node[prefix + 'size'];
data[i++] = color;
data[i++] = 2 * Math.PI / 3;
data[i++] = node[prefix + 'x'];
data[i++] = node[prefix + 'y'];
data[i++] = node[prefix + 'size'];
data[i++] = color;
data[i++] = 4 * Math.PI / 3;
},
render: function(gl, program, data, params) {
var buffer;
// Define attributes:
var positionLocation =
gl.getAttribLocation(program, 'a_position'),
sizeLocation =
gl.getAttribLocation(program, 'a_size'),
colorLocation =
gl.getAttribLocation(program, 'a_color'),
angleLocation =
gl.getAttribLocation(program, 'a_angle'),
resolutionLocation =
gl.getUniformLocation(program, 'u_resolution'),
matrixLocation =
gl.getUniformLocation(program, 'u_matrix'),
ratioLocation =
gl.getUniformLocation(program, 'u_ratio'),
scaleLocation =
gl.getUniformLocation(program, 'u_scale');
buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, data, gl.DYNAMIC_DRAW);
gl.uniform2f(resolutionLocation, params.width, params.height);
gl.uniform1f(
ratioLocation,
1 / Math.pow(params.ratio, params.settings('nodesPowRatio'))
);
gl.uniform1f(scaleLocation, params.scalingRatio);
gl.uniformMatrix3fv(matrixLocation, false, params.matrix);
gl.enableVertexAttribArray(positionLocation);
gl.enableVertexAttribArray(sizeLocation);
gl.enableVertexAttribArray(colorLocation);
gl.enableVertexAttribArray(angleLocation);
gl.vertexAttribPointer(
positionLocation,
2,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
0
);
gl.vertexAttribPointer(
sizeLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
8
);
gl.vertexAttribPointer(
colorLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
12
);
gl.vertexAttribPointer(
angleLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
16
);
gl.drawArrays(
gl.TRIANGLES,
params.start || 0,
params.count || (data.length / this.ATTRIBUTES)
);
},
initProgram: function(gl) {
var vertexShader,
fragmentShader,
program;
vertexShader = sigma.utils.loadShader(
gl,
[
'attribute vec2 a_position;',
'attribute float a_size;',
'attribute float a_color;',
'attribute float a_angle;',
'uniform vec2 u_resolution;',
'uniform float u_ratio;',
'uniform float u_scale;',
'uniform mat3 u_matrix;',
'varying vec4 color;',
'varying vec2 center;',
'varying float radius;',
'void main() {',
// Multiply the point size twice:
'radius = a_size * u_ratio;',
// Scale from [[-1 1] [-1 1]] to the container:
'vec2 position = (u_matrix * vec3(a_position, 1)).xy;',
// 'center = (position / u_resolution * 2.0 - 1.0) * vec2(1, -1);',
'center = position * u_scale;',
'center = vec2(center.x, u_scale * u_resolution.y - center.y);',
'position = position +',
'2.0 * radius * vec2(cos(a_angle), sin(a_angle));',
'position = (position / u_resolution * 2.0 - 1.0) * vec2(1, -1);',
'radius = radius * u_scale;',
'gl_Position = vec4(position, 0, 1);',
// Extract the color:
'float c = a_color;',
'color.b = mod(c, 256.0); c = floor(c / 256.0);',
'color.g = mod(c, 256.0); c = floor(c / 256.0);',
'color.r = mod(c, 256.0); c = floor(c / 256.0); color /= 255.0;',
'color.a = 1.0;',
'}'
].join('\n'),
gl.VERTEX_SHADER
);
fragmentShader = sigma.utils.loadShader(
gl,
[
'precision mediump float;',
'varying vec4 color;',
'varying vec2 center;',
'varying float radius;',
'void main(void) {',
'vec4 color0 = vec4(0.0, 0.0, 0.0, 0.0);',
'vec2 m = gl_FragCoord.xy - center;',
'float diff = radius - sqrt(m.x * m.x + m.y * m.y);',
// Here is how we draw a disc instead of a square:
'if (diff > 0.0)',
'gl_FragColor = color;',
'else',
'gl_FragColor = color0;',
'}'
].join('\n'),
gl.FRAGMENT_SHADER
);
program = sigma.utils.loadProgram(gl, [vertexShader, fragmentShader]);
return program;
}
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.webgl.nodes');
/**
* This node renderer will display nodes in the fastest way: Nodes are basic
* squares, drawn through the gl.POINTS drawing method. The size of the nodes
* are represented with the "gl_PointSize" value in the vertex shader.
*
* It is the fastest node renderer here since the buffer just takes one line
* to draw each node (with attributes "x", "y", "size" and "color").
*
* Nevertheless, this method has some problems, especially due to some issues
* with the gl.POINTS:
* - First, if the center of a node is outside the scene, the point will not
* be drawn, even if it should be partly on screen.
* - I tried applying a fragment shader similar to the one in the default
* node renderer to display them as discs, but it did not work fine on
* some computers settings, filling the discs with weird gradients not
* depending on the actual color.
*/
sigma.webgl.nodes.fast = {
POINTS: 1,
ATTRIBUTES: 4,
addNode: function(node, data, i, prefix, settings) {
data[i++] = node[prefix + 'x'];
data[i++] = node[prefix + 'y'];
data[i++] = node[prefix + 'size'];
data[i++] = sigma.utils.floatColor(
node.color || settings('defaultNodeColor')
);
},
render: function(gl, program, data, params) {
var buffer;
// Define attributes:
var positionLocation =
gl.getAttribLocation(program, 'a_position'),
sizeLocation =
gl.getAttribLocation(program, 'a_size'),
colorLocation =
gl.getAttribLocation(program, 'a_color'),
resolutionLocation =
gl.getUniformLocation(program, 'u_resolution'),
matrixLocation =
gl.getUniformLocation(program, 'u_matrix'),
ratioLocation =
gl.getUniformLocation(program, 'u_ratio'),
scaleLocation =
gl.getUniformLocation(program, 'u_scale');
buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, data, gl.DYNAMIC_DRAW);
gl.uniform2f(resolutionLocation, params.width, params.height);
gl.uniform1f(
ratioLocation,
1 / Math.pow(params.ratio, params.settings('nodesPowRatio'))
);
gl.uniform1f(scaleLocation, params.scalingRatio);
gl.uniformMatrix3fv(matrixLocation, false, params.matrix);
gl.enableVertexAttribArray(positionLocation);
gl.enableVertexAttribArray(sizeLocation);
gl.enableVertexAttribArray(colorLocation);
gl.vertexAttribPointer(
positionLocation,
2,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
0
);
gl.vertexAttribPointer(
sizeLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
8
);
gl.vertexAttribPointer(
colorLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
12
);
gl.drawArrays(
gl.POINTS,
params.start || 0,
params.count || (data.length / this.ATTRIBUTES)
);
},
initProgram: function(gl) {
var vertexShader,
fragmentShader,
program;
vertexShader = sigma.utils.loadShader(
gl,
[
'attribute vec2 a_position;',
'attribute float a_size;',
'attribute float a_color;',
'uniform vec2 u_resolution;',
'uniform float u_ratio;',
'uniform float u_scale;',
'uniform mat3 u_matrix;',
'varying vec4 color;',
'void main() {',
// Scale from [[-1 1] [-1 1]] to the container:
'gl_Position = vec4(',
'((u_matrix * vec3(a_position, 1)).xy /',
'u_resolution * 2.0 - 1.0) * vec2(1, -1),',
'0,',
'1',
');',
// Multiply the point size twice:
// - x SCALING_RATIO to correct the canvas scaling
// - x 2 to correct the formulae
'gl_PointSize = a_size * u_ratio * u_scale * 2.0;',
// Extract the color:
'float c = a_color;',
'color.b = mod(c, 256.0); c = floor(c / 256.0);',
'color.g = mod(c, 256.0); c = floor(c / 256.0);',
'color.r = mod(c, 256.0); c = floor(c / 256.0); color /= 255.0;',
'color.a = 1.0;',
'}'
].join('\n'),
gl.VERTEX_SHADER
);
fragmentShader = sigma.utils.loadShader(
gl,
[
'precision mediump float;',
'varying vec4 color;',
'void main(void) {',
'float border = 0.01;',
'float radius = 0.5;',
'vec4 color0 = vec4(0.0, 0.0, 0.0, 0.0);',
'vec2 m = gl_PointCoord - vec2(0.5, 0.5);',
'float dist = radius - sqrt(m.x * m.x + m.y * m.y);',
'float t = 0.0;',
'if (dist > border)',
't = 1.0;',
'else if (dist > 0.0)',
't = dist / border;',
'gl_FragColor = mix(color0, color, t);',
'}'
].join('\n'),
gl.FRAGMENT_SHADER
);
program = sigma.utils.loadProgram(gl, [vertexShader, fragmentShader]);
return program;
}
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.webgl.edges');
/**
* This edge renderer will display edges as lines going from the source node
* to the target node. To deal with edge thicknesses, the lines are made of
* two triangles forming rectangles, with the gl.TRIANGLES drawing mode.
*
* It is expensive, since drawing a single edge requires 6 points, each
* having 7 attributes (source position, target position, thickness, color
* and a flag indicating which vertice of the rectangle it is).
*/
sigma.webgl.edges.def = {
POINTS: 6,
ATTRIBUTES: 7,
addEdge: function(edge, source, target, data, i, prefix, settings) {
var w = (edge[prefix + 'size'] || 1) / 2,
x1 = source[prefix + 'x'],
y1 = source[prefix + 'y'],
x2 = target[prefix + 'x'],
y2 = target[prefix + 'y'],
color = edge.color;
if (!color)
switch (settings('edgeColor')) {
case 'source':
color = source.color || settings('defaultNodeColor');
break;
case 'target':
color = target.color || settings('defaultNodeColor');
break;
default:
color = settings('defaultEdgeColor');
break;
}
// Normalize color:
color = sigma.utils.floatColor(color);
data[i++] = x1;
data[i++] = y1;
data[i++] = x2;
data[i++] = y2;
data[i++] = w;
data[i++] = 0.0;
data[i++] = color;
data[i++] = x2;
data[i++] = y2;
data[i++] = x1;
data[i++] = y1;
data[i++] = w;
data[i++] = 1.0;
data[i++] = color;
data[i++] = x2;
data[i++] = y2;
data[i++] = x1;
data[i++] = y1;
data[i++] = w;
data[i++] = 0.0;
data[i++] = color;
data[i++] = x2;
data[i++] = y2;
data[i++] = x1;
data[i++] = y1;
data[i++] = w;
data[i++] = 0.0;
data[i++] = color;
data[i++] = x1;
data[i++] = y1;
data[i++] = x2;
data[i++] = y2;
data[i++] = w;
data[i++] = 1.0;
data[i++] = color;
data[i++] = x1;
data[i++] = y1;
data[i++] = x2;
data[i++] = y2;
data[i++] = w;
data[i++] = 0.0;
data[i++] = color;
},
render: function(gl, program, data, params) {
var buffer;
// Define attributes:
var colorLocation =
gl.getAttribLocation(program, 'a_color'),
positionLocation1 =
gl.getAttribLocation(program, 'a_position1'),
positionLocation2 =
gl.getAttribLocation(program, 'a_position2'),
thicknessLocation =
gl.getAttribLocation(program, 'a_thickness'),
minusLocation =
gl.getAttribLocation(program, 'a_minus'),
resolutionLocation =
gl.getUniformLocation(program, 'u_resolution'),
matrixLocation =
gl.getUniformLocation(program, 'u_matrix'),
matrixHalfPiLocation =
gl.getUniformLocation(program, 'u_matrixHalfPi'),
matrixHalfPiMinusLocation =
gl.getUniformLocation(program, 'u_matrixHalfPiMinus'),
ratioLocation =
gl.getUniformLocation(program, 'u_ratio'),
scaleLocation =
gl.getUniformLocation(program, 'u_scale');
buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW);
gl.uniform2f(resolutionLocation, params.width, params.height);
gl.uniform1f(
ratioLocation,
params.ratio / Math.pow(params.ratio, params.settings('edgesPowRatio'))
);
gl.uniform1f(scaleLocation, params.scalingRatio);
gl.uniformMatrix3fv(matrixLocation, false, params.matrix);
gl.uniformMatrix2fv(
matrixHalfPiLocation,
false,
sigma.utils.matrices.rotation(Math.PI / 2, true)
);
gl.uniformMatrix2fv(
matrixHalfPiMinusLocation,
false,
sigma.utils.matrices.rotation(-Math.PI / 2, true)
);
gl.enableVertexAttribArray(colorLocation);
gl.enableVertexAttribArray(positionLocation1);
gl.enableVertexAttribArray(positionLocation2);
gl.enableVertexAttribArray(thicknessLocation);
gl.enableVertexAttribArray(minusLocation);
gl.vertexAttribPointer(positionLocation1,
2,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
0
);
gl.vertexAttribPointer(positionLocation2,
2,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
8
);
gl.vertexAttribPointer(thicknessLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
16
);
gl.vertexAttribPointer(minusLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
20
);
gl.vertexAttribPointer(colorLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
24
);
gl.drawArrays(
gl.TRIANGLES,
params.start || 0,
params.count || (data.length / this.ATTRIBUTES)
);
},
initProgram: function(gl) {
var vertexShader,
fragmentShader,
program;
vertexShader = sigma.utils.loadShader(
gl,
[
'attribute vec2 a_position1;',
'attribute vec2 a_position2;',
'attribute float a_thickness;',
'attribute float a_minus;',
'attribute float a_color;',
'uniform vec2 u_resolution;',
'uniform float u_ratio;',
'uniform float u_scale;',
'uniform mat3 u_matrix;',
'uniform mat2 u_matrixHalfPi;',
'uniform mat2 u_matrixHalfPiMinus;',
'varying vec4 color;',
'void main() {',
// Find the good point:
'vec2 position = a_thickness * u_ratio *',
'normalize(a_position2 - a_position1);',
'mat2 matrix = a_minus * u_matrixHalfPiMinus +',
'(1.0 - a_minus) * u_matrixHalfPi;',
'position = matrix * position + a_position1;',
// Scale from [[-1 1] [-1 1]] to the container:
'gl_Position = vec4(',
'((u_matrix * vec3(position, 1)).xy /',
'u_resolution * 2.0 - 1.0) * vec2(1, -1),',
'0,',
'1',
');',
// Extract the color:
'float c = a_color;',
'color.b = mod(c, 256.0); c = floor(c / 256.0);',
'color.g = mod(c, 256.0); c = floor(c / 256.0);',
'color.r = mod(c, 256.0); c = floor(c / 256.0); color /= 255.0;',
'color.a = 1.0;',
'}'
].join('\n'),
gl.VERTEX_SHADER
);
fragmentShader = sigma.utils.loadShader(
gl,
[
'precision mediump float;',
'varying vec4 color;',
'void main(void) {',
'gl_FragColor = color;',
'}'
].join('\n'),
gl.FRAGMENT_SHADER
);
program = sigma.utils.loadProgram(gl, [vertexShader, fragmentShader]);
return program;
}
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.webgl.edges');
/**
* This edge renderer will display edges as lines with the gl.LINES display
* mode. Since this mode does not support well thickness, edges are all drawn
* with the same thickness (3px), independantly of the edge attributes or the
* zooming ratio.
*/
sigma.webgl.edges.fast = {
POINTS: 2,
ATTRIBUTES: 3,
addEdge: function(edge, source, target, data, i, prefix, settings) {
var w = (edge[prefix + 'size'] || 1) / 2,
x1 = source[prefix + 'x'],
y1 = source[prefix + 'y'],
x2 = target[prefix + 'x'],
y2 = target[prefix + 'y'],
color = edge.color;
if (!color)
switch (settings('edgeColor')) {
case 'source':
color = source.color || settings('defaultNodeColor');
break;
case 'target':
color = target.color || settings('defaultNodeColor');
break;
default:
color = settings('defaultEdgeColor');
break;
}
// Normalize color:
color = sigma.utils.floatColor(color);
data[i++] = x1;
data[i++] = y1;
data[i++] = color;
data[i++] = x2;
data[i++] = y2;
data[i++] = color;
},
render: function(gl, program, data, params) {
var buffer;
// Define attributes:
var colorLocation =
gl.getAttribLocation(program, 'a_color'),
positionLocation =
gl.getAttribLocation(program, 'a_position'),
resolutionLocation =
gl.getUniformLocation(program, 'u_resolution'),
matrixLocation =
gl.getUniformLocation(program, 'u_matrix');
buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, data, gl.DYNAMIC_DRAW);
gl.uniform2f(resolutionLocation, params.width, params.height);
gl.uniformMatrix3fv(matrixLocation, false, params.matrix);
gl.enableVertexAttribArray(positionLocation);
gl.enableVertexAttribArray(colorLocation);
gl.vertexAttribPointer(positionLocation,
2,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
0
);
gl.vertexAttribPointer(colorLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
8
);
gl.lineWidth(3);
gl.drawArrays(
gl.LINES,
params.start || 0,
params.count || (data.length / this.ATTRIBUTES)
);
},
initProgram: function(gl) {
var vertexShader,
fragmentShader,
program;
vertexShader = sigma.utils.loadShader(
gl,
[
'attribute vec2 a_position;',
'attribute float a_color;',
'uniform vec2 u_resolution;',
'uniform mat3 u_matrix;',
'varying vec4 color;',
'void main() {',
// Scale from [[-1 1] [-1 1]] to the container:
'gl_Position = vec4(',
'((u_matrix * vec3(a_position, 1)).xy /',
'u_resolution * 2.0 - 1.0) * vec2(1, -1),',
'0,',
'1',
');',
// Extract the color:
'float c = a_color;',
'color.b = mod(c, 256.0); c = floor(c / 256.0);',
'color.g = mod(c, 256.0); c = floor(c / 256.0);',
'color.r = mod(c, 256.0); c = floor(c / 256.0); color /= 255.0;',
'color.a = 1.0;',
'}'
].join('\n'),
gl.VERTEX_SHADER
);
fragmentShader = sigma.utils.loadShader(
gl,
[
'precision mediump float;',
'varying vec4 color;',
'void main(void) {',
'gl_FragColor = color;',
'}'
].join('\n'),
gl.FRAGMENT_SHADER
);
program = sigma.utils.loadProgram(gl, [vertexShader, fragmentShader]);
return program;
}
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.webgl.edges');
/**
* This edge renderer will display edges as arrows going from the source node
* to the target node. To deal with edge thicknesses, the lines are made of
* three triangles: two forming rectangles, with the gl.TRIANGLES drawing
* mode.
*
* It is expensive, since drawing a single edge requires 9 points, each
* having a lot of attributes.
*/
sigma.webgl.edges.arrow = {
POINTS: 9,
ATTRIBUTES: 11,
addEdge: function(edge, source, target, data, i, prefix, settings) {
var w = (edge[prefix + 'size'] || 1) / 2,
x1 = source[prefix + 'x'],
y1 = source[prefix + 'y'],
x2 = target[prefix + 'x'],
y2 = target[prefix + 'y'],
targetSize = target[prefix + 'size'],
color = edge.color;
if (!color)
switch (settings('edgeColor')) {
case 'source':
color = source.color || settings('defaultNodeColor');
break;
case 'target':
color = target.color || settings('defaultNodeColor');
break;
default:
color = settings('defaultEdgeColor');
break;
}
// Normalize color:
color = sigma.utils.floatColor(color);
data[i++] = x1;
data[i++] = y1;
data[i++] = x2;
data[i++] = y2;
data[i++] = w;
data[i++] = targetSize;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = color;
data[i++] = x2;
data[i++] = y2;
data[i++] = x1;
data[i++] = y1;
data[i++] = w;
data[i++] = targetSize;
data[i++] = 1.0;
data[i++] = 1.0;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = color;
data[i++] = x2;
data[i++] = y2;
data[i++] = x1;
data[i++] = y1;
data[i++] = w;
data[i++] = targetSize;
data[i++] = 1.0;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = color;
data[i++] = x2;
data[i++] = y2;
data[i++] = x1;
data[i++] = y1;
data[i++] = w;
data[i++] = targetSize;
data[i++] = 1.0;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = color;
data[i++] = x1;
data[i++] = y1;
data[i++] = x2;
data[i++] = y2;
data[i++] = w;
data[i++] = targetSize;
data[i++] = 0.0;
data[i++] = 1.0;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = color;
data[i++] = x1;
data[i++] = y1;
data[i++] = x2;
data[i++] = y2;
data[i++] = w;
data[i++] = targetSize;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = 0.0;
data[i++] = color;
// Arrow head:
data[i++] = x2;
data[i++] = y2;
data[i++] = x1;
data[i++] = y1;
data[i++] = w;
data[i++] = targetSize;
data[i++] = 1.0;
data[i++] = 0.0;
data[i++] = 1.0;
data[i++] = -1.0;
data[i++] = color;
data[i++] = x2;
data[i++] = y2;
data[i++] = x1;
data[i++] = y1;
data[i++] = w;
data[i++] = targetSize;
data[i++] = 1.0;
data[i++] = 0.0;
data[i++] = 1.0;
data[i++] = 0.0;
data[i++] = color;
data[i++] = x2;
data[i++] = y2;
data[i++] = x1;
data[i++] = y1;
data[i++] = w;
data[i++] = targetSize;
data[i++] = 1.0;
data[i++] = 0.0;
data[i++] = 1.0;
data[i++] = 1.0;
data[i++] = color;
},
render: function(gl, program, data, params) {
var buffer;
// Define attributes:
var positionLocation1 =
gl.getAttribLocation(program, 'a_pos1'),
positionLocation2 =
gl.getAttribLocation(program, 'a_pos2'),
thicknessLocation =
gl.getAttribLocation(program, 'a_thickness'),
targetSizeLocation =
gl.getAttribLocation(program, 'a_tSize'),
delayLocation =
gl.getAttribLocation(program, 'a_delay'),
minusLocation =
gl.getAttribLocation(program, 'a_minus'),
headLocation =
gl.getAttribLocation(program, 'a_head'),
headPositionLocation =
gl.getAttribLocation(program, 'a_headPosition'),
colorLocation =
gl.getAttribLocation(program, 'a_color'),
resolutionLocation =
gl.getUniformLocation(program, 'u_resolution'),
matrixLocation =
gl.getUniformLocation(program, 'u_matrix'),
matrixHalfPiLocation =
gl.getUniformLocation(program, 'u_matrixHalfPi'),
matrixHalfPiMinusLocation =
gl.getUniformLocation(program, 'u_matrixHalfPiMinus'),
ratioLocation =
gl.getUniformLocation(program, 'u_ratio'),
nodeRatioLocation =
gl.getUniformLocation(program, 'u_nodeRatio'),
arrowHeadLocation =
gl.getUniformLocation(program, 'u_arrowHead'),
scaleLocation =
gl.getUniformLocation(program, 'u_scale');
buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW);
gl.uniform2f(resolutionLocation, params.width, params.height);
gl.uniform1f(
ratioLocation,
params.ratio / Math.pow(params.ratio, params.settings('edgesPowRatio'))
);
gl.uniform1f(
nodeRatioLocation,
Math.pow(params.ratio, params.settings('nodesPowRatio')) /
params.ratio
);
gl.uniform1f(arrowHeadLocation, 5.0);
gl.uniform1f(scaleLocation, params.scalingRatio);
gl.uniformMatrix3fv(matrixLocation, false, params.matrix);
gl.uniformMatrix2fv(
matrixHalfPiLocation,
false,
sigma.utils.matrices.rotation(Math.PI / 2, true)
);
gl.uniformMatrix2fv(
matrixHalfPiMinusLocation,
false,
sigma.utils.matrices.rotation(-Math.PI / 2, true)
);
gl.enableVertexAttribArray(positionLocation1);
gl.enableVertexAttribArray(positionLocation2);
gl.enableVertexAttribArray(thicknessLocation);
gl.enableVertexAttribArray(targetSizeLocation);
gl.enableVertexAttribArray(delayLocation);
gl.enableVertexAttribArray(minusLocation);
gl.enableVertexAttribArray(headLocation);
gl.enableVertexAttribArray(headPositionLocation);
gl.enableVertexAttribArray(colorLocation);
gl.vertexAttribPointer(positionLocation1,
2,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
0
);
gl.vertexAttribPointer(positionLocation2,
2,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
8
);
gl.vertexAttribPointer(thicknessLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
16
);
gl.vertexAttribPointer(targetSizeLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
20
);
gl.vertexAttribPointer(delayLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
24
);
gl.vertexAttribPointer(minusLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
28
);
gl.vertexAttribPointer(headLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
32
);
gl.vertexAttribPointer(headPositionLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
36
);
gl.vertexAttribPointer(colorLocation,
1,
gl.FLOAT,
false,
this.ATTRIBUTES * Float32Array.BYTES_PER_ELEMENT,
40
);
gl.drawArrays(
gl.TRIANGLES,
params.start || 0,
params.count || (data.length / this.ATTRIBUTES)
);
},
initProgram: function(gl) {
var vertexShader,
fragmentShader,
program;
vertexShader = sigma.utils.loadShader(
gl,
[
'attribute vec2 a_pos1;',
'attribute vec2 a_pos2;',
'attribute float a_thickness;',
'attribute float a_tSize;',
'attribute float a_delay;',
'attribute float a_minus;',
'attribute float a_head;',
'attribute float a_headPosition;',
'attribute float a_color;',
'uniform vec2 u_resolution;',
'uniform float u_ratio;',
'uniform float u_nodeRatio;',
'uniform float u_arrowHead;',
'uniform float u_scale;',
'uniform mat3 u_matrix;',
'uniform mat2 u_matrixHalfPi;',
'uniform mat2 u_matrixHalfPiMinus;',
'varying vec4 color;',
'void main() {',
// Find the good point:
'vec2 pos = normalize(a_pos2 - a_pos1);',
'mat2 matrix = (1.0 - a_head) *',
'(',
'a_minus * u_matrixHalfPiMinus +',
'(1.0 - a_minus) * u_matrixHalfPi',
') + a_head * (',
'a_headPosition * u_matrixHalfPiMinus * 0.6 +',
'(a_headPosition * a_headPosition - 1.0) * mat2(1.0)',
');',
'pos = a_pos1 + (',
// Deal with body:
'(1.0 - a_head) * a_thickness * u_ratio * matrix * pos +',
// Deal with head:
'a_head * u_arrowHead * a_thickness * u_ratio * matrix * pos +',
// Deal with delay:
'a_delay * pos * (',
'a_tSize / u_nodeRatio +',
'u_arrowHead * a_thickness * u_ratio',
')',
');',
// Scale from [[-1 1] [-1 1]] to the container:
'gl_Position = vec4(',
'((u_matrix * vec3(pos, 1)).xy /',
'u_resolution * 2.0 - 1.0) * vec2(1, -1),',
'0,',
'1',
');',
// Extract the color:
'float c = a_color;',
'color.b = mod(c, 256.0); c = floor(c / 256.0);',
'color.g = mod(c, 256.0); c = floor(c / 256.0);',
'color.r = mod(c, 256.0); c = floor(c / 256.0); color /= 255.0;',
'color.a = 1.0;',
'}'
].join('\n'),
gl.VERTEX_SHADER
);
fragmentShader = sigma.utils.loadShader(
gl,
[
'precision mediump float;',
'varying vec4 color;',
'void main(void) {',
'gl_FragColor = color;',
'}'
].join('\n'),
gl.FRAGMENT_SHADER
);
program = sigma.utils.loadProgram(gl, [vertexShader, fragmentShader]);
return program;
}
};
})();
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.canvas.labels');
/**
* This label renderer will just display the label on the right of the node.
*
* @param {object} node The node object.
* @param {CanvasRenderingContext2D} context The canvas context.
* @param {configurable} settings The settings function.
*/
sigma.canvas.labels.def = function(node, context, settings) {
var fontSize,
prefix = settings('prefix') || '',
size = node[prefix + 'size'];
if (size < settings('labelThreshold'))
return;
if (!node.label || typeof node.label !== 'string')
return;
fontSize = (settings('labelSize') === 'fixed') ?
settings('defaultLabelSize') :
settings('labelSizeRatio') * size;
context.font = (settings('fontStyle') ? settings('fontStyle') + ' ' : '') +
fontSize + 'px ' + settings('font');
context.fillStyle = (settings('labelColor') === 'node') ?
(node.color || settings('defaultNodeColor')) :
settings('defaultLabelColor');
context.fillText(
node.label,
Math.round(node[prefix + 'x'] + size + 3),
Math.round(node[prefix + 'y'] + fontSize / 3)
);
};
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.canvas.hovers');
/**
* This hover renderer will basically display the label with a background.
*
* @param {object} node The node object.
* @param {CanvasRenderingContext2D} context The canvas context.
* @param {configurable} settings The settings function.
*/
sigma.canvas.hovers.def = function(node, context, settings) {
var x,
y,
w,
h,
e,
fontStyle = settings('hoverFontStyle') || settings('fontStyle'),
prefix = settings('prefix') || '',
size = node[prefix + 'size'],
fontSize = (settings('labelSize') === 'fixed') ?
settings('defaultLabelSize') :
settings('labelSizeRatio') * size;
// Label background:
context.font = (fontStyle ? fontStyle + ' ' : '') +
fontSize + 'px ' + (settings('hoverFont') || settings('font'));
context.beginPath();
context.fillStyle = settings('labelHoverBGColor') === 'node' ?
(node.color || settings('defaultNodeColor')) :
settings('defaultHoverLabelBGColor');
if (node.label && settings('labelHoverShadow')) {
context.shadowOffsetX = 0;
context.shadowOffsetY = 0;
context.shadowBlur = 8;
context.shadowColor = settings('labelHoverShadowColor');
}
if (node.label && typeof node.label === 'string') {
x = Math.round(node[prefix + 'x'] - fontSize / 2 - 2);
y = Math.round(node[prefix + 'y'] - fontSize / 2 - 2);
w = Math.round(
context.measureText(node.label).width + fontSize / 2 + size + 7
);
h = Math.round(fontSize + 4);
e = Math.round(fontSize / 2 + 2);
context.moveTo(x, y + e);
context.arcTo(x, y, x + e, y, e);
context.lineTo(x + w, y);
context.lineTo(x + w, y + h);
context.lineTo(x + e, y + h);
context.arcTo(x, y + h, x, y + h - e, e);
context.lineTo(x, y + e);
context.closePath();
context.fill();
context.shadowOffsetX = 0;
context.shadowOffsetY = 0;
context.shadowBlur = 0;
}
// Node border:
if (settings('borderSize') > 0) {
context.beginPath();
context.fillStyle = settings('nodeBorderColor') === 'node' ?
(node.color || settings('defaultNodeColor')) :
settings('defaultNodeBorderColor');
context.arc(
node[prefix + 'x'],
node[prefix + 'y'],
size + settings('borderSize'),
0,
Math.PI * 2,
true
);
context.closePath();
context.fill();
}
// Node:
var nodeRenderer = sigma.canvas.nodes[node.type] || sigma.canvas.nodes.def;
nodeRenderer(node, context, settings);
// Display the label:
if (node.label && typeof node.label === 'string') {
context.fillStyle = (settings('labelHoverColor') === 'node') ?
(node.color || settings('defaultNodeColor')) :
settings('defaultLabelHoverColor');
context.fillText(
node.label,
Math.round(node[prefix + 'x'] + size + 3),
Math.round(node[prefix + 'y'] + fontSize / 3)
);
}
};
}).call(this);
;(function() {
'use strict';
sigma.utils.pkg('sigma.canvas.nodes');
/**
* The default node renderer. It renders the node as a simple disc.
*
* @param {object} node The node object.
* @param {CanvasRenderingContext2D} context The canvas context.
* @param {configurable} settings The settings function.
*/
sigma.canvas.nodes.def = function(node, context, settings) {
var prefix = settings('prefix') || '';
context.fillStyle = node.color || settings('defaultNodeColor');
context.beginPath();
context.arc(
node[prefix + 'x'],
node[prefix + 'y'],
node[prefix + 'size'],
0,
Math.PI * 2,
true
);
context.closePath();
context.fill();
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.canvas.edges');
/**
* The default edge renderer. It renders the edge as a simple line.
*
* @param {object} edge The edge object.
* @param {object} source node The edge source node.
* @param {object} target node The edge target node.
* @param {CanvasRenderingContext2D} context The canvas context.
* @param {configurable} settings The settings function.
*/
sigma.canvas.edges.def = function(edge, source, target, context, settings) {
var color = edge.color,
prefix = settings('prefix') || '',
size = edge[prefix + 'size'] || 1,
edgeColor = settings('edgeColor'),
defaultNodeColor = settings('defaultNodeColor'),
defaultEdgeColor = settings('defaultEdgeColor');
if (!color)
switch (edgeColor) {
case 'source':
color = source.color || defaultNodeColor;
break;
case 'target':
color = target.color || defaultNodeColor;
break;
default:
color = defaultEdgeColor;
break;
}
context.strokeStyle = color;
context.lineWidth = size;
context.beginPath();
context.moveTo(
source[prefix + 'x'],
source[prefix + 'y']
);
context.lineTo(
target[prefix + 'x'],
target[prefix + 'y']
);
context.stroke();
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.canvas.edges');
/**
* This edge renderer will display edges as arrows going from the source node
*
* @param {object} edge The edge object.
* @param {object} source node The edge source node.
* @param {object} target node The edge target node.
* @param {CanvasRenderingContext2D} context The canvas context.
* @param {configurable} settings The settings function.
*/
sigma.canvas.edges.arrow = function(edge, source, target, context, settings) {
var color = edge.color,
prefix = settings('prefix') || '',
edgeColor = settings('edgeColor'),
defaultNodeColor = settings('defaultNodeColor'),
defaultEdgeColor = settings('defaultEdgeColor'),
size = edge[prefix + 'size'] || 1,
tSize = target[prefix + 'size'],
sX = source[prefix + 'x'],
sY = source[prefix + 'y'],
tX = target[prefix + 'x'],
tY = target[prefix + 'y'],
aSize = Math.max(size * 2.5, settings('minArrowSize')),
d = Math.sqrt(Math.pow(tX - sX, 2) + Math.pow(tY - sY, 2)),
aX = sX + (tX - sX) * (d - aSize - tSize) / d,
aY = sY + (tY - sY) * (d - aSize - tSize) / d,
vX = (tX - sX) * aSize / d,
vY = (tY - sY) * aSize / d;
if (!color)
switch (edgeColor) {
case 'source':
color = source.color || defaultNodeColor;
break;
case 'target':
color = target.color || defaultNodeColor;
break;
default:
color = defaultEdgeColor;
break;
}
context.strokeStyle = color;
context.lineWidth = size;
context.beginPath();
context.moveTo(sX, sY);
context.lineTo(
aX,
aY
);
context.stroke();
context.fillStyle = color;
context.beginPath();
context.moveTo(aX + vX, aY + vY);
context.lineTo(aX + vY * 0.6, aY - vX * 0.6);
context.lineTo(aX - vY * 0.6, aY + vX * 0.6);
context.lineTo(aX + vX, aY + vY);
context.closePath();
context.fill();
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.canvas.edgehovers');
/**
* This hover renderer will display the edge with a different color or size.
*
* @param {object} edge The edge object.
* @param {object} source node The edge source node.
* @param {object} target node The edge target node.
* @param {CanvasRenderingContext2D} context The canvas context.
* @param {configurable} settings The settings function.
*/
sigma.canvas.edgehovers.def =
function(edge, source, target, context, settings) {
var color = edge.color,
prefix = settings('prefix') || '',
size = edge[prefix + 'size'] || 1,
edgeColor = settings('edgeColor'),
defaultNodeColor = settings('defaultNodeColor'),
defaultEdgeColor = settings('defaultEdgeColor');
if (!color)
switch (edgeColor) {
case 'source':
color = source.color || defaultNodeColor;
break;
case 'target':
color = target.color || defaultNodeColor;
break;
default:
color = defaultEdgeColor;
break;
}
if (settings('edgeHoverColor') === 'edge') {
color = edge.hover_color || color;
} else {
color = edge.hover_color || settings('defaultEdgeHoverColor') || color;
}
size *= settings('edgeHoverSizeRatio');
context.strokeStyle = color;
context.lineWidth = size;
context.beginPath();
context.moveTo(
source[prefix + 'x'],
source[prefix + 'y']
);
context.lineTo(
target[prefix + 'x'],
target[prefix + 'y']
);
context.stroke();
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.canvas.edgehovers');
/**
* This hover renderer will display the edge with a different color or size.
*
* @param {object} edge The edge object.
* @param {object} source node The edge source node.
* @param {object} target node The edge target node.
* @param {CanvasRenderingContext2D} context The canvas context.
* @param {configurable} settings The settings function.
*/
sigma.canvas.edgehovers.curve =
function(edge, source, target, context, settings) {
var color = edge.color,
prefix = settings('prefix') || '',
size = settings('edgeHoverSizeRatio') * (edge[prefix + 'size'] || 1),
edgeColor = settings('edgeColor'),
defaultNodeColor = settings('defaultNodeColor'),
defaultEdgeColor = settings('defaultEdgeColor'),
cp = {},
sSize = source[prefix + 'size'],
sX = source[prefix + 'x'],
sY = source[prefix + 'y'],
tX = target[prefix + 'x'],
tY = target[prefix + 'y'];
cp = (source.id === target.id) ?
sigma.utils.getSelfLoopControlPoints(sX, sY, sSize) :
sigma.utils.getQuadraticControlPoint(sX, sY, tX, tY);
if (!color)
switch (edgeColor) {
case 'source':
color = source.color || defaultNodeColor;
break;
case 'target':
color = target.color || defaultNodeColor;
break;
default:
color = defaultEdgeColor;
break;
}
if (settings('edgeHoverColor') === 'edge') {
color = edge.hover_color || color;
} else {
color = edge.hover_color || settings('defaultEdgeHoverColor') || color;
}
context.strokeStyle = color;
context.lineWidth = size;
context.beginPath();
context.moveTo(sX, sY);
if (source.id === target.id) {
context.bezierCurveTo(cp.x1, cp.y1, cp.x2, cp.y2, tX, tY);
} else {
context.quadraticCurveTo(cp.x, cp.y, tX, tY);
}
context.stroke();
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.canvas.edgehovers');
/**
* This hover renderer will display the edge with a different color or size.
*
* @param {object} edge The edge object.
* @param {object} source node The edge source node.
* @param {object} target node The edge target node.
* @param {CanvasRenderingContext2D} context The canvas context.
* @param {configurable} settings The settings function.
*/
sigma.canvas.edgehovers.arrow =
function(edge, source, target, context, settings) {
var color = edge.color,
prefix = settings('prefix') || '',
edgeColor = settings('edgeColor'),
defaultNodeColor = settings('defaultNodeColor'),
defaultEdgeColor = settings('defaultEdgeColor'),
size = edge[prefix + 'size'] || 1,
tSize = target[prefix + 'size'],
sX = source[prefix + 'x'],
sY = source[prefix + 'y'],
tX = target[prefix + 'x'],
tY = target[prefix + 'y'];
size = (edge.hover) ?
settings('edgeHoverSizeRatio') * size : size;
var aSize = size * 2.5,
d = Math.sqrt(Math.pow(tX - sX, 2) + Math.pow(tY - sY, 2)),
aX = sX + (tX - sX) * (d - aSize - tSize) / d,
aY = sY + (tY - sY) * (d - aSize - tSize) / d,
vX = (tX - sX) * aSize / d,
vY = (tY - sY) * aSize / d;
if (!color)
switch (edgeColor) {
case 'source':
color = source.color || defaultNodeColor;
break;
case 'target':
color = target.color || defaultNodeColor;
break;
default:
color = defaultEdgeColor;
break;
}
if (settings('edgeHoverColor') === 'edge') {
color = edge.hover_color || color;
} else {
color = edge.hover_color || settings('defaultEdgeHoverColor') || color;
}
context.strokeStyle = color;
context.lineWidth = size;
context.beginPath();
context.moveTo(sX, sY);
context.lineTo(
aX,
aY
);
context.stroke();
context.fillStyle = color;
context.beginPath();
context.moveTo(aX + vX, aY + vY);
context.lineTo(aX + vY * 0.6, aY - vX * 0.6);
context.lineTo(aX - vY * 0.6, aY + vX * 0.6);
context.lineTo(aX + vX, aY + vY);
context.closePath();
context.fill();
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.canvas.edgehovers');
/**
* This hover renderer will display the edge with a different color or size.
*
* @param {object} edge The edge object.
* @param {object} source node The edge source node.
* @param {object} target node The edge target node.
* @param {CanvasRenderingContext2D} context The canvas context.
* @param {configurable} settings The settings function.
*/
sigma.canvas.edgehovers.curvedArrow =
function(edge, source, target, context, settings) {
var color = edge.color,
prefix = settings('prefix') || '',
edgeColor = settings('edgeColor'),
defaultNodeColor = settings('defaultNodeColor'),
defaultEdgeColor = settings('defaultEdgeColor'),
cp = {},
size = settings('edgeHoverSizeRatio') * (edge[prefix + 'size'] || 1),
tSize = target[prefix + 'size'],
sX = source[prefix + 'x'],
sY = source[prefix + 'y'],
tX = target[prefix + 'x'],
tY = target[prefix + 'y'],
d,
aSize,
aX,
aY,
vX,
vY;
cp = (source.id === target.id) ?
sigma.utils.getSelfLoopControlPoints(sX, sY, tSize) :
sigma.utils.getQuadraticControlPoint(sX, sY, tX, tY);
if (source.id === target.id) {
d = Math.sqrt(Math.pow(tX - cp.x1, 2) + Math.pow(tY - cp.y1, 2));
aSize = size * 2.5;
aX = cp.x1 + (tX - cp.x1) * (d - aSize - tSize) / d;
aY = cp.y1 + (tY - cp.y1) * (d - aSize - tSize) / d;
vX = (tX - cp.x1) * aSize / d;
vY = (tY - cp.y1) * aSize / d;
}
else {
d = Math.sqrt(Math.pow(tX - cp.x, 2) + Math.pow(tY - cp.y, 2));
aSize = size * 2.5;
aX = cp.x + (tX - cp.x) * (d - aSize - tSize) / d;
aY = cp.y + (tY - cp.y) * (d - aSize - tSize) / d;
vX = (tX - cp.x) * aSize / d;
vY = (tY - cp.y) * aSize / d;
}
if (!color)
switch (edgeColor) {
case 'source':
color = source.color || defaultNodeColor;
break;
case 'target':
color = target.color || defaultNodeColor;
break;
default:
color = defaultEdgeColor;
break;
}
if (settings('edgeHoverColor') === 'edge') {
color = edge.hover_color || color;
} else {
color = edge.hover_color || settings('defaultEdgeHoverColor') || color;
}
context.strokeStyle = color;
context.lineWidth = size;
context.beginPath();
context.moveTo(sX, sY);
if (source.id === target.id) {
context.bezierCurveTo(cp.x2, cp.y2, cp.x1, cp.y1, aX, aY);
} else {
context.quadraticCurveTo(cp.x, cp.y, aX, aY);
}
context.stroke();
context.fillStyle = color;
context.beginPath();
context.moveTo(aX + vX, aY + vY);
context.lineTo(aX + vY * 0.6, aY - vX * 0.6);
context.lineTo(aX - vY * 0.6, aY + vX * 0.6);
context.lineTo(aX + vX, aY + vY);
context.closePath();
context.fill();
};
})();
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.canvas.extremities');
/**
* The default renderer for hovered edge extremities. It renders the edge
* extremities as hovered.
*
* @param {object} edge The edge object.
* @param {object} source node The edge source node.
* @param {object} target node The edge target node.
* @param {CanvasRenderingContext2D} context The canvas context.
* @param {configurable} settings The settings function.
*/
sigma.canvas.extremities.def =
function(edge, source, target, context, settings) {
// Source Node:
(
sigma.canvas.hovers[source.type] ||
sigma.canvas.hovers.def
) (
source, context, settings
);
// Target Node:
(
sigma.canvas.hovers[target.type] ||
sigma.canvas.hovers.def
) (
target, context, settings
);
};
}).call(this);
;(function() {
'use strict';
sigma.utils.pkg('sigma.svg.utils');
/**
* Some useful functions used by sigma's SVG renderer.
*/
sigma.svg.utils = {
/**
* SVG Element show.
*
* @param {DOMElement} element The DOM element to show.
*/
show: function(element) {
element.style.display = '';
return this;
},
/**
* SVG Element hide.
*
* @param {DOMElement} element The DOM element to hide.
*/
hide: function(element) {
element.style.display = 'none';
return this;
}
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.svg.nodes');
/**
* The default node renderer. It renders the node as a simple disc.
*/
sigma.svg.nodes.def = {
/**
* SVG Element creation.
*
* @param {object} node The node object.
* @param {configurable} settings The settings function.
*/
create: function(node, settings) {
var prefix = settings('prefix') || '',
circle = document.createElementNS(settings('xmlns'), 'circle');
// Defining the node's circle
circle.setAttributeNS(null, 'data-node-id', node.id);
circle.setAttributeNS(null, 'class', settings('classPrefix') + '-node');
circle.setAttributeNS(
null, 'fill', node.color || settings('defaultNodeColor'));
// Returning the DOM Element
return circle;
},
/**
* SVG Element update.
*
* @param {object} node The node object.
* @param {DOMElement} circle The node DOM element.
* @param {configurable} settings The settings function.
*/
update: function(node, circle, settings) {
var prefix = settings('prefix') || '';
// Applying changes
// TODO: optimize - check if necessary
circle.setAttributeNS(null, 'cx', node[prefix + 'x']);
circle.setAttributeNS(null, 'cy', node[prefix + 'y']);
circle.setAttributeNS(null, 'r', node[prefix + 'size']);
// Updating only if not freestyle
if (!settings('freeStyle'))
circle.setAttributeNS(
null, 'fill', node.color || settings('defaultNodeColor'));
// Showing
circle.style.display = '';
return this;
}
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.svg.edges');
/**
* The default edge renderer. It renders the node as a simple line.
*/
sigma.svg.edges.def = {
/**
* SVG Element creation.
*
* @param {object} edge The edge object.
* @param {object} source The source node object.
* @param {object} target The target node object.
* @param {configurable} settings The settings function.
*/
create: function(edge, source, target, settings) {
var color = edge.color,
prefix = settings('prefix') || '',
edgeColor = settings('edgeColor'),
defaultNodeColor = settings('defaultNodeColor'),
defaultEdgeColor = settings('defaultEdgeColor');
if (!color)
switch (edgeColor) {
case 'source':
color = source.color || defaultNodeColor;
break;
case 'target':
color = target.color || defaultNodeColor;
break;
default:
color = defaultEdgeColor;
break;
}
var line = document.createElementNS(settings('xmlns'), 'line');
// Attributes
line.setAttributeNS(null, 'data-edge-id', edge.id);
line.setAttributeNS(null, 'class', settings('classPrefix') + '-edge');
line.setAttributeNS(null, 'stroke', color);
return line;
},
/**
* SVG Element update.
*
* @param {object} edge The edge object.
* @param {DOMElement} line The line DOM Element.
* @param {object} source The source node object.
* @param {object} target The target node object.
* @param {configurable} settings The settings function.
*/
update: function(edge, line, source, target, settings) {
var prefix = settings('prefix') || '';
line.setAttributeNS(null, 'stroke-width', edge[prefix + 'size'] || 1);
line.setAttributeNS(null, 'x1', source[prefix + 'x']);
line.setAttributeNS(null, 'y1', source[prefix + 'y']);
line.setAttributeNS(null, 'x2', target[prefix + 'x']);
line.setAttributeNS(null, 'y2', target[prefix + 'y']);
// Showing
line.style.display = '';
return this;
}
};
})();
;(function() {
'use strict';
sigma.utils.pkg('sigma.svg.edges');
/**
* The curve edge renderer. It renders the node as a bezier curve.
*/
sigma.svg.edges.curve = {
/**
* SVG Element creation.
*
* @param {object} edge The edge object.
* @param {object} source The source node object.
* @param {object} target The target node object.
* @param {configurable} settings The settings function.
*/
create: function(edge, source, target, settings) {
var color = edge.color,
prefix = settings('prefix') || '',
edgeColor = settings('edgeColor'),
defaultNodeColor = settings('defaultNodeColor'),
defaultEdgeColor = settings('defaultEdgeColor');
if (!color)
switch (edgeColor) {
case 'source':
color = source.color || defaultNodeColor;
break;
case 'target':
color = target.color || defaultNodeColor;
break;
default:
color = defaultEdgeColor;
break;
}
var path = document.createElementNS(settings('xmlns'), 'path');
// Attributes
path.setAttributeNS(null, 'data-edge-id', edge.id);
path.setAttributeNS(null, 'class', settings('classPrefix') + '-edge');
path.setAttributeNS(null, 'stroke', color);
return path;
},
/**
* SVG Element update.
*
* @param {object} edge The edge object.
* @param {DOMElement} line The line DOM Element.
* @param {object} source The source node object.
* @param {object} target The target node object.
* @param {configurable} settings The settings function.
*/
update: function(edge, path, source, target, settings) {
var prefix = settings('prefix') || '';
path.setAttributeNS(null, 'stroke-width', edge[prefix + 'size'] || 1);
// Control point
var cx = (source[prefix + 'x'] + target[prefix + 'x']) / 2 +
(target[prefix + 'y'] - source[prefix + 'y']) / 4,
cy = (source[prefix + 'y'] + target[prefix + 'y']) / 2 +
(source[prefix + 'x'] - target[prefix + 'x']) / 4;
// Path
var p = 'M' + source[prefix + 'x'] + ',' + source[prefix + 'y'] + ' ' +
'Q' + cx + ',' + cy + ' ' +
target[prefix + 'x'] + ',' + target[prefix + 'y'];
// Updating attributes
path.setAttributeNS(null, 'd', p);
path.setAttributeNS(null, 'fill', 'none');
// Showing
path.style.display = '';
return this;
}
};
})();
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.svg.labels');
/**
* The default label renderer. It renders the label as a simple text.
*/
sigma.svg.labels.def = {
/**
* SVG Element creation.
*
* @param {object} node The node object.
* @param {configurable} settings The settings function.
*/
create: function(node, settings) {
var prefix = settings('prefix') || '',
size = node[prefix + 'size'],
text = document.createElementNS(settings('xmlns'), 'text');
var fontSize = (settings('labelSize') === 'fixed') ?
settings('defaultLabelSize') :
settings('labelSizeRatio') * size;
var fontColor = (settings('labelColor') === 'node') ?
(node.color || settings('defaultNodeColor')) :
settings('defaultLabelColor');
text.setAttributeNS(null, 'data-label-target', node.id);
text.setAttributeNS(null, 'class', settings('classPrefix') + '-label');
text.setAttributeNS(null, 'font-size', fontSize);
text.setAttributeNS(null, 'font-family', settings('font'));
text.setAttributeNS(null, 'fill', fontColor);
text.innerHTML = node.label;
text.textContent = node.label;
return text;
},
/**
* SVG Element update.
*
* @param {object} node The node object.
* @param {DOMElement} text The label DOM element.
* @param {configurable} settings The settings function.
*/
update: function(node, text, settings) {
var prefix = settings('prefix') || '',
size = node[prefix + 'size'];
var fontSize = (settings('labelSize') === 'fixed') ?
settings('defaultLabelSize') :
settings('labelSizeRatio') * size;
// Case when we don't want to display the label
if (!settings('forceLabels') && size < settings('labelThreshold'))
return;
if (typeof node.label !== 'string')
return;
// Updating
text.setAttributeNS(null, 'x',
Math.round(node[prefix + 'x'] + size + 3));
text.setAttributeNS(null, 'y',
Math.round(node[prefix + 'y'] + fontSize / 3));
// Showing
text.style.display = '';
return this;
}
};
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.svg.hovers');
/**
* The default hover renderer.
*/
sigma.svg.hovers.def = {
/**
* SVG Element creation.
*
* @param {object} node The node object.
* @param {CanvasElement} measurementCanvas A fake canvas handled by
* the svg to perform some measurements and
* passed by the renderer.
* @param {DOMElement} nodeCircle The node DOM Element.
* @param {configurable} settings The settings function.
*/
create: function(node, nodeCircle, measurementCanvas, settings) {
// Defining visual properties
var x,
y,
w,
h,
e,
d,
fontStyle = settings('hoverFontStyle') || settings('fontStyle'),
prefix = settings('prefix') || '',
size = node[prefix + 'size'],
fontSize = (settings('labelSize') === 'fixed') ?
settings('defaultLabelSize') :
settings('labelSizeRatio') * size,
fontColor = (settings('labelHoverColor') === 'node') ?
(node.color || settings('defaultNodeColor')) :
settings('defaultLabelHoverColor');
// Creating elements
var group = document.createElementNS(settings('xmlns'), 'g'),
rectangle = document.createElementNS(settings('xmlns'), 'rect'),
circle = document.createElementNS(settings('xmlns'), 'circle'),
text = document.createElementNS(settings('xmlns'), 'text');
// Defining properties
group.setAttributeNS(null, 'class', settings('classPrefix') + '-hover');
group.setAttributeNS(null, 'data-node-id', node.id);
if (typeof node.label === 'string') {
// Text
text.innerHTML = node.label;
text.textContent = node.label;
text.setAttributeNS(
null,
'class',
settings('classPrefix') + '-hover-label');
text.setAttributeNS(null, 'font-size', fontSize);
text.setAttributeNS(null, 'font-family', settings('font'));
text.setAttributeNS(null, 'fill', fontColor);
text.setAttributeNS(null, 'x',
Math.round(node[prefix + 'x'] + size + 3));
text.setAttributeNS(null, 'y',
Math.round(node[prefix + 'y'] + fontSize / 3));
// Measures
// OPTIMIZE: Find a better way than a measurement canvas
x = Math.round(node[prefix + 'x'] - fontSize / 2 - 2);
y = Math.round(node[prefix + 'y'] - fontSize / 2 - 2);
w = Math.round(
measurementCanvas.measureText(node.label).width +
fontSize / 2 + size + 9
);
h = Math.round(fontSize + 4);
e = Math.round(fontSize / 2 + 2);
// Circle
circle.setAttributeNS(
null,
'class',
settings('classPrefix') + '-hover-area');
circle.setAttributeNS(null, 'fill', '#fff');
circle.setAttributeNS(null, 'cx', node[prefix + 'x']);
circle.setAttributeNS(null, 'cy', node[prefix + 'y']);
circle.setAttributeNS(null, 'r', e);
// Rectangle
rectangle.setAttributeNS(
null,
'class',
settings('classPrefix') + '-hover-area');
rectangle.setAttributeNS(null, 'fill', '#fff');
rectangle.setAttributeNS(null, 'x', node[prefix + 'x'] + e / 4);
rectangle.setAttributeNS(null, 'y', node[prefix + 'y'] - e);
rectangle.setAttributeNS(null, 'width', w);
rectangle.setAttributeNS(null, 'height', h);
}
// Appending childs
group.appendChild(circle);
group.appendChild(rectangle);
group.appendChild(text);
group.appendChild(nodeCircle);
return group;
}
};
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.middlewares');
sigma.utils.pkg('sigma.utils');
/**
* This middleware will rescale the graph such that it takes an optimal space
* on the renderer.
*
* As each middleware, this function is executed in the scope of the sigma
* instance.
*
* @param {?string} readPrefix The read prefix.
* @param {?string} writePrefix The write prefix.
* @param {object} options The parameters.
*/
sigma.middlewares.rescale = function(readPrefix, writePrefix, options) {
var i,
l,
a,
b,
c,
d,
scale,
margin,
n = this.graph.nodes(),
e = this.graph.edges(),
settings = this.settings.embedObjects(options || {}),
bounds = settings('bounds') || sigma.utils.getBoundaries(
this.graph,
readPrefix,
true
),
minX = bounds.minX,
minY = bounds.minY,
maxX = bounds.maxX,
maxY = bounds.maxY,
sizeMax = bounds.sizeMax,
weightMax = bounds.weightMax,
w = settings('width') || 1,
h = settings('height') || 1,
rescaleSettings = settings('autoRescale'),
validSettings = {
nodePosition: 1,
nodeSize: 1,
edgeSize: 1
};
/**
* What elements should we rescale?
*/
if (!(rescaleSettings instanceof Array))
rescaleSettings = ['nodePosition', 'nodeSize', 'edgeSize'];
for (i = 0, l = rescaleSettings.length; i < l; i++)
if (!validSettings[rescaleSettings[i]])
throw new Error(
'The rescale setting "' + rescaleSettings[i] + '" is not recognized.'
);
var np = ~rescaleSettings.indexOf('nodePosition'),
ns = ~rescaleSettings.indexOf('nodeSize'),
es = ~rescaleSettings.indexOf('edgeSize');
/**
* First, we compute the scaling ratio, without considering the sizes
* of the nodes : Each node will have its center in the canvas, but might
* be partially out of it.
*/
scale = settings('scalingMode') === 'outside' ?
Math.max(
w / Math.max(maxX - minX, 1),
h / Math.max(maxY - minY, 1)
) :
Math.min(
w / Math.max(maxX - minX, 1),
h / Math.max(maxY - minY, 1)
);
/**
* Then, we correct that scaling ratio considering a margin, which is
* basically the size of the biggest node.
* This has to be done as a correction since to compare the size of the
* biggest node to the X and Y values, we have to first get an
* approximation of the scaling ratio.
**/
margin =
(
settings('rescaleIgnoreSize') ?
0 :
(settings('maxNodeSize') || sizeMax) / scale
) +
(settings('sideMargin') || 0);
maxX += margin;
minX -= margin;
maxY += margin;
minY -= margin;
// Fix the scaling with the new extrema:
scale = settings('scalingMode') === 'outside' ?
Math.max(
w / Math.max(maxX - minX, 1),
h / Math.max(maxY - minY, 1)
) :
Math.min(
w / Math.max(maxX - minX, 1),
h / Math.max(maxY - minY, 1)
);
// Size homothetic parameters:
if (!settings('maxNodeSize') && !settings('minNodeSize')) {
a = 1;
b = 0;
} else if (settings('maxNodeSize') === settings('minNodeSize')) {
a = 0;
b = +settings('maxNodeSize');
} else {
a = (settings('maxNodeSize') - settings('minNodeSize')) / sizeMax;
b = +settings('minNodeSize');
}
if (!settings('maxEdgeSize') && !settings('minEdgeSize')) {
c = 1;
d = 0;
} else if (settings('maxEdgeSize') === settings('minEdgeSize')) {
c = 0;
d = +settings('minEdgeSize');
} else {
c = (settings('maxEdgeSize') - settings('minEdgeSize')) / weightMax;
d = +settings('minEdgeSize');
}
// Rescale the nodes and edges:
for (i = 0, l = e.length; i < l; i++)
e[i][writePrefix + 'size'] =
e[i][readPrefix + 'size'] * (es ? c : 1) + (es ? d : 0);
for (i = 0, l = n.length; i < l; i++) {
n[i][writePrefix + 'size'] =
n[i][readPrefix + 'size'] * (ns ? a : 1) + (ns ? b : 0);
n[i][writePrefix + 'x'] =
(n[i][readPrefix + 'x'] - (maxX + minX) / 2) * (np ? scale : 1);
n[i][writePrefix + 'y'] =
(n[i][readPrefix + 'y'] - (maxY + minY) / 2) * (np ? scale : 1);
}
};
sigma.utils.getBoundaries = function(graph, prefix, doEdges) {
var i,
l,
e = graph.edges(),
n = graph.nodes(),
weightMax = -Infinity,
sizeMax = -Infinity,
minX = Infinity,
minY = Infinity,
maxX = -Infinity,
maxY = -Infinity;
if (doEdges)
for (i = 0, l = e.length; i < l; i++)
weightMax = Math.max(e[i][prefix + 'size'], weightMax);
for (i = 0, l = n.length; i < l; i++) {
sizeMax = Math.max(n[i][prefix + 'size'], sizeMax);
maxX = Math.max(n[i][prefix + 'x'], maxX);
minX = Math.min(n[i][prefix + 'x'], minX);
maxY = Math.max(n[i][prefix + 'y'], maxY);
minY = Math.min(n[i][prefix + 'y'], minY);
}
weightMax = weightMax || 1;
sizeMax = sizeMax || 1;
return {
weightMax: weightMax,
sizeMax: sizeMax,
minX: minX,
minY: minY,
maxX: maxX,
maxY: maxY
};
};
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.middlewares');
/**
* This middleware will just copy the graphic properties.
*
* @param {?string} readPrefix The read prefix.
* @param {?string} writePrefix The write prefix.
*/
sigma.middlewares.copy = function(readPrefix, writePrefix) {
var i,
l,
a;
if (writePrefix + '' === readPrefix + '')
return;
a = this.graph.nodes();
for (i = 0, l = a.length; i < l; i++) {
a[i][writePrefix + 'x'] = a[i][readPrefix + 'x'];
a[i][writePrefix + 'y'] = a[i][readPrefix + 'y'];
a[i][writePrefix + 'size'] = a[i][readPrefix + 'size'];
}
a = this.graph.edges();
for (i = 0, l = a.length; i < l; i++)
a[i][writePrefix + 'size'] = a[i][readPrefix + 'size'];
};
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.misc.animation.running');
/**
* Generates a unique ID for the animation.
*
* @return {string} Returns the new ID.
*/
var _getID = (function() {
var id = 0;
return function() {
return '' + (++id);
};
})();
/**
* This function animates a camera. It has to be called with the camera to
* animate, the values of the coordinates to reach and eventually some
* options. It returns a number id, that you can use to kill the animation,
* with the method sigma.misc.animation.kill(id).
*
* The available options are:
*
* {?number} duration The duration of the animation.
* {?function} onNewFrame A callback to execute when the animation
* enter a new frame.
* {?function} onComplete A callback to execute when the animation
* is completed or killed.
* {?(string|function)} easing The name of a function from the package
* sigma.utils.easings, or a custom easing
* function.
*
* @param {camera} camera The camera to animate.
* @param {object} target The coordinates to reach.
* @param {?object} options Eventually an object to specify some options to
* the function. The available options are
* presented in the description of the function.
* @return {number} The animation id, to make it easy to kill
* through the method "sigma.misc.animation.kill".
*/
sigma.misc.animation.camera = function(camera, val, options) {
if (
!(camera instanceof sigma.classes.camera) ||
typeof val !== 'object' ||
!val
)
throw 'animation.camera: Wrong arguments.';
if (
typeof val.x !== 'number' &&
typeof val.y !== 'number' &&
typeof val.ratio !== 'number' &&
typeof val.angle !== 'number'
)
throw 'There must be at least one valid coordinate in the given val.';
var fn,
id,
anim,
easing,
duration,
initialVal,
o = options || {},
start = sigma.utils.dateNow();
// Store initial values:
initialVal = {
x: camera.x,
y: camera.y,
ratio: camera.ratio,
angle: camera.angle
};
duration = o.duration;
easing = typeof o.easing !== 'function' ?
sigma.utils.easings[o.easing || 'quadraticInOut'] :
o.easing;
fn = function() {
var coef,
t = o.duration ? (sigma.utils.dateNow() - start) / o.duration : 1;
// If the animation is over:
if (t >= 1) {
camera.isAnimated = false;
camera.goTo({
x: val.x !== undefined ? val.x : initialVal.x,
y: val.y !== undefined ? val.y : initialVal.y,
ratio: val.ratio !== undefined ? val.ratio : initialVal.ratio,
angle: val.angle !== undefined ? val.angle : initialVal.angle
});
cancelAnimationFrame(id);
delete sigma.misc.animation.running[id];
// Check callbacks:
if (typeof o.onComplete === 'function')
o.onComplete();
// Else, let's keep going:
} else {
coef = easing(t);
camera.isAnimated = true;
camera.goTo({
x: val.x !== undefined ?
initialVal.x + (val.x - initialVal.x) * coef :
initialVal.x,
y: val.y !== undefined ?
initialVal.y + (val.y - initialVal.y) * coef :
initialVal.y,
ratio: val.ratio !== undefined ?
initialVal.ratio + (val.ratio - initialVal.ratio) * coef :
initialVal.ratio,
angle: val.angle !== undefined ?
initialVal.angle + (val.angle - initialVal.angle) * coef :
initialVal.angle
});
// Check callbacks:
if (typeof o.onNewFrame === 'function')
o.onNewFrame();
anim.frameId = requestAnimationFrame(fn);
}
};
id = _getID();
anim = {
frameId: requestAnimationFrame(fn),
target: camera,
type: 'camera',
options: o,
fn: fn
};
sigma.misc.animation.running[id] = anim;
return id;
};
/**
* Kills a running animation. It triggers the eventual onComplete callback.
*
* @param {number} id The id of the animation to kill.
* @return {object} Returns the sigma.misc.animation package.
*/
sigma.misc.animation.kill = function(id) {
if (arguments.length !== 1 || typeof id !== 'number')
throw 'animation.kill: Wrong arguments.';
var o = sigma.misc.animation.running[id];
if (o) {
cancelAnimationFrame(id);
delete sigma.misc.animation.running[o.frameId];
if (o.type === 'camera')
o.target.isAnimated = false;
// Check callbacks:
if (typeof (o.options || {}).onComplete === 'function')
o.options.onComplete();
}
return this;
};
/**
* Kills every running animations, or only the one with the specified type,
* if a string parameter is given.
*
* @param {?(string|object)} filter A string to filter the animations to kill
* on their type (example: "camera"), or an
* object to filter on their target.
* @return {number} Returns the number of animations killed
* that way.
*/
sigma.misc.animation.killAll = function(filter) {
var o,
id,
count = 0,
type = typeof filter === 'string' ? filter : null,
target = typeof filter === 'object' ? filter : null,
running = sigma.misc.animation.running;
for (id in running)
if (
(!type || running[id].type === type) &&
(!target || running[id].target === target)
) {
o = sigma.misc.animation.running[id];
cancelAnimationFrame(o.frameId);
delete sigma.misc.animation.running[id];
if (o.type === 'camera')
o.target.isAnimated = false;
// Increment counter:
count++;
// Check callbacks:
if (typeof (o.options || {}).onComplete === 'function')
o.options.onComplete();
}
return count;
};
/**
* Returns "true" if any animation that is currently still running matches
* the filter given to the function.
*
* @param {string|object} filter A string to filter the animations to kill
* on their type (example: "camera"), or an
* object to filter on their target.
* @return {boolean} Returns true if any running animation
* matches.
*/
sigma.misc.animation.has = function(filter) {
var id,
type = typeof filter === 'string' ? filter : null,
target = typeof filter === 'object' ? filter : null,
running = sigma.misc.animation.running;
for (id in running)
if (
(!type || running[id].type === type) &&
(!target || running[id].target === target)
)
return true;
return false;
};
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.misc');
/**
* This helper will bind any no-DOM renderer (for instance canvas or WebGL)
* to its captors, to properly dispatch the good events to the sigma instance
* to manage clicking, hovering etc...
*
* It has to be called in the scope of the related renderer.
*/
sigma.misc.bindEvents = function(prefix) {
var i,
l,
mX,
mY,
captor,
self = this;
function getNodes(e) {
if (e) {
mX = 'x' in e.data ? e.data.x : mX;
mY = 'y' in e.data ? e.data.y : mY;
}
var i,
j,
l,
n,
x,
y,
s,
inserted,
selected = [],
modifiedX = mX + self.width / 2,
modifiedY = mY + self.height / 2,
point = self.camera.cameraPosition(
mX,
mY
),
nodes = self.camera.quadtree.point(
point.x,
point.y
);
if (nodes.length)
for (i = 0, l = nodes.length; i < l; i++) {
n = nodes[i];
x = n[prefix + 'x'];
y = n[prefix + 'y'];
s = n[prefix + 'size'];
if (
!n.hidden &&
modifiedX > x - s &&
modifiedX < x + s &&
modifiedY > y - s &&
modifiedY < y + s &&
Math.sqrt(
Math.pow(modifiedX - x, 2) +
Math.pow(modifiedY - y, 2)
) < s
) {
// Insert the node:
inserted = false;
for (j = 0; j < selected.length; j++)
if (n.size > selected[j].size) {
selected.splice(j, 0, n);
inserted = true;
break;
}
if (!inserted)
selected.push(n);
}
}
return selected;
}
function getEdges(e) {
if (!self.settings('enableEdgeHovering')) {
// No event if the setting is off:
return [];
}
var isCanvas = (
sigma.renderers.canvas && self instanceof sigma.renderers.canvas);
if (!isCanvas) {
// A quick hardcoded rule to prevent people from using this feature
// with the WebGL renderer (which is not good enough at the moment):
throw new Error(
'The edge events feature is not compatible with the WebGL renderer'
);
}
if (e) {
mX = 'x' in e.data ? e.data.x : mX;
mY = 'y' in e.data ? e.data.y : mY;
}
var i,
j,
l,
a,
edge,
s,
maxEpsilon = self.settings('edgeHoverPrecision'),
source,
target,
cp,
nodeIndex = {},
inserted,
selected = [],
modifiedX = mX + self.width / 2,
modifiedY = mY + self.height / 2,
point = self.camera.cameraPosition(
mX,
mY
),
edges = [];
if (isCanvas) {
var nodesOnScreen = self.camera.quadtree.area(
self.camera.getRectangle(self.width, self.height)
);
for (a = nodesOnScreen, i = 0, l = a.length; i < l; i++)
nodeIndex[a[i].id] = a[i];
}
if (self.camera.edgequadtree !== undefined) {
edges = self.camera.edgequadtree.point(
point.x,
point.y
);
}
function insertEdge(selected, edge) {
inserted = false;
for (j = 0; j < selected.length; j++)
if (edge.size > selected[j].size) {
selected.splice(j, 0, edge);
inserted = true;
break;
}
if (!inserted)
selected.push(edge);
}
if (edges.length)
for (i = 0, l = edges.length; i < l; i++) {
edge = edges[i];
source = self.graph.nodes(edge.source);
target = self.graph.nodes(edge.target);
// (HACK) we can't get edge[prefix + 'size'] on WebGL renderer:
s = edge[prefix + 'size'] ||
edge['read_' + prefix + 'size'];
// First, let's identify which edges are drawn. To do this, we keep
// every edges that have at least one extremity displayed according to
// the quadtree and the "hidden" attribute. We also do not keep hidden
// edges.
// Then, let's check if the mouse is on the edge (we suppose that it
// is a line segment).
if (
!edge.hidden &&
!source.hidden && !target.hidden &&
(!isCanvas ||
(nodeIndex[edge.source] || nodeIndex[edge.target])) &&
sigma.utils.getDistance(
source[prefix + 'x'],
source[prefix + 'y'],
modifiedX,
modifiedY) > source[prefix + 'size'] &&
sigma.utils.getDistance(
target[prefix + 'x'],
target[prefix + 'y'],
modifiedX,
modifiedY) > target[prefix + 'size']
) {
if (edge.type == 'curve' || edge.type == 'curvedArrow') {
if (source.id === target.id) {
cp = sigma.utils.getSelfLoopControlPoints(
source[prefix + 'x'],
source[prefix + 'y'],
source[prefix + 'size']
);
if (
sigma.utils.isPointOnBezierCurve(
modifiedX,
modifiedY,
source[prefix + 'x'],
source[prefix + 'y'],
target[prefix + 'x'],
target[prefix + 'y'],
cp.x1,
cp.y1,
cp.x2,
cp.y2,
Math.max(s, maxEpsilon)
)) {
insertEdge(selected, edge);
}
}
else {
cp = sigma.utils.getQuadraticControlPoint(
source[prefix + 'x'],
source[prefix + 'y'],
target[prefix + 'x'],
target[prefix + 'y']);
if (
sigma.utils.isPointOnQuadraticCurve(
modifiedX,
modifiedY,
source[prefix + 'x'],
source[prefix + 'y'],
target[prefix + 'x'],
target[prefix + 'y'],
cp.x,
cp.y,
Math.max(s, maxEpsilon)
)) {
insertEdge(selected, edge);
}
}
} else if (
sigma.utils.isPointOnSegment(
modifiedX,
modifiedY,
source[prefix + 'x'],
source[prefix + 'y'],
target[prefix + 'x'],
target[prefix + 'y'],
Math.max(s, maxEpsilon)
)) {
insertEdge(selected, edge);
}
}
}
return selected;
}
function bindCaptor(captor) {
var nodes,
edges,
overNodes = {},
overEdges = {};
function onClick(e) {
if (!self.settings('eventsEnabled'))
return;
self.dispatchEvent('click', e.data);
nodes = getNodes(e);
edges = getEdges(e);
if (nodes.length) {
self.dispatchEvent('clickNode', {
node: nodes[0],
captor: e.data
});
self.dispatchEvent('clickNodes', {
node: nodes,
captor: e.data
});
} else if (edges.length) {
self.dispatchEvent('clickEdge', {
edge: edges[0],
captor: e.data
});
self.dispatchEvent('clickEdges', {
edge: edges,
captor: e.data
});
} else
self.dispatchEvent('clickStage', {captor: e.data});
}
function onDoubleClick(e) {
if (!self.settings('eventsEnabled'))
return;
self.dispatchEvent('doubleClick', e.data);
nodes = getNodes(e);
edges = getEdges(e);
if (nodes.length) {
self.dispatchEvent('doubleClickNode', {
node: nodes[0],
captor: e.data
});
self.dispatchEvent('doubleClickNodes', {
node: nodes,
captor: e.data
});
} else if (edges.length) {
self.dispatchEvent('doubleClickEdge', {
edge: edges[0],
captor: e.data
});
self.dispatchEvent('doubleClickEdges', {
edge: edges,
captor: e.data
});
} else
self.dispatchEvent('doubleClickStage', {captor: e.data});
}
function onRightClick(e) {
if (!self.settings('eventsEnabled'))
return;
self.dispatchEvent('rightClick', e.data);
nodes = getNodes(e);
edges = getEdges(e);
if (nodes.length) {
self.dispatchEvent('rightClickNode', {
node: nodes[0],
captor: e.data
});
self.dispatchEvent('rightClickNodes', {
node: nodes,
captor: e.data
});
} else if (edges.length) {
self.dispatchEvent('rightClickEdge', {
edge: edges[0],
captor: e.data
});
self.dispatchEvent('rightClickEdges', {
edge: edges,
captor: e.data
});
} else
self.dispatchEvent('rightClickStage', {captor: e.data});
}
function onOut(e) {
if (!self.settings('eventsEnabled'))
return;
var k,
i,
l,
le,
outNodes = [],
outEdges = [];
for (k in overNodes)
outNodes.push(overNodes[k]);
overNodes = {};
// Dispatch both single and multi events:
for (i = 0, l = outNodes.length; i < l; i++)
self.dispatchEvent('outNode', {
node: outNodes[i],
captor: e.data
});
if (outNodes.length)
self.dispatchEvent('outNodes', {
nodes: outNodes,
captor: e.data
});
overEdges = {};
// Dispatch both single and multi events:
for (i = 0, le = outEdges.length; i < le; i++)
self.dispatchEvent('outEdge', {
edge: outEdges[i],
captor: e.data
});
if (outEdges.length)
self.dispatchEvent('outEdges', {
edges: outEdges,
captor: e.data
});
}
function onMove(e) {
if (!self.settings('eventsEnabled'))
return;
nodes = getNodes(e);
edges = getEdges(e);
var i,
k,
node,
edge,
newOutNodes = [],
newOverNodes = [],
currentOverNodes = {},
l = nodes.length,
newOutEdges = [],
newOverEdges = [],
currentOverEdges = {},
le = edges.length;
// Check newly overred nodes:
for (i = 0; i < l; i++) {
node = nodes[i];
currentOverNodes[node.id] = node;
if (!overNodes[node.id]) {
newOverNodes.push(node);
overNodes[node.id] = node;
}
}
// Check no more overred nodes:
for (k in overNodes)
if (!currentOverNodes[k]) {
newOutNodes.push(overNodes[k]);
delete overNodes[k];
}
// Dispatch both single and multi events:
for (i = 0, l = newOverNodes.length; i < l; i++)
self.dispatchEvent('overNode', {
node: newOverNodes[i],
captor: e.data
});
for (i = 0, l = newOutNodes.length; i < l; i++)
self.dispatchEvent('outNode', {
node: newOutNodes[i],
captor: e.data
});
if (newOverNodes.length)
self.dispatchEvent('overNodes', {
nodes: newOverNodes,
captor: e.data
});
if (newOutNodes.length)
self.dispatchEvent('outNodes', {
nodes: newOutNodes,
captor: e.data
});
// Check newly overred edges:
for (i = 0; i < le; i++) {
edge = edges[i];
currentOverEdges[edge.id] = edge;
if (!overEdges[edge.id]) {
newOverEdges.push(edge);
overEdges[edge.id] = edge;
}
}
// Check no more overred edges:
for (k in overEdges)
if (!currentOverEdges[k]) {
newOutEdges.push(overEdges[k]);
delete overEdges[k];
}
// Dispatch both single and multi events:
for (i = 0, le = newOverEdges.length; i < le; i++)
self.dispatchEvent('overEdge', {
edge: newOverEdges[i],
captor: e.data
});
for (i = 0, le = newOutEdges.length; i < le; i++)
self.dispatchEvent('outEdge', {
edge: newOutEdges[i],
captor: e.data
});
if (newOverEdges.length)
self.dispatchEvent('overEdges', {
edges: newOverEdges,
captor: e.data
});
if (newOutEdges.length)
self.dispatchEvent('outEdges', {
edges: newOutEdges,
captor: e.data
});
}
// Bind events:
captor.bind('click', onClick);
captor.bind('mousedown', onMove);
captor.bind('mouseup', onMove);
captor.bind('mousemove', onMove);
captor.bind('mouseout', onOut);
captor.bind('doubleclick', onDoubleClick);
captor.bind('rightclick', onRightClick);
self.bind('render', onMove);
}
for (i = 0, l = this.captors.length; i < l; i++)
bindCaptor(this.captors[i]);
};
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.misc');
/**
* This helper will bind any DOM renderer (for instance svg)
* to its captors, to properly dispatch the good events to the sigma instance
* to manage clicking, hovering etc...
*
* It has to be called in the scope of the related renderer.
*/
sigma.misc.bindDOMEvents = function(container) {
var self = this,
graph = this.graph;
// DOMElement abstraction
function Element(domElement) {
// Helpers
this.attr = function(attrName) {
return domElement.getAttributeNS(null, attrName);
};
// Properties
this.tag = domElement.tagName;
this.class = this.attr('class');
this.id = this.attr('id');
// Methods
this.isNode = function() {
return !!~this.class.indexOf(self.settings('classPrefix') + '-node');
};
this.isEdge = function() {
return !!~this.class.indexOf(self.settings('classPrefix') + '-edge');
};
this.isHover = function() {
return !!~this.class.indexOf(self.settings('classPrefix') + '-hover');
};
}
// Click
function click(e) {
if (!self.settings('eventsEnabled'))
return;
// Generic event
self.dispatchEvent('click', e);
// Are we on a node?
var element = new Element(e.target);
if (element.isNode())
self.dispatchEvent('clickNode', {
node: graph.nodes(element.attr('data-node-id'))
});
else
self.dispatchEvent('clickStage');
e.preventDefault();
e.stopPropagation();
}
// Double click
function doubleClick(e) {
if (!self.settings('eventsEnabled'))
return;
// Generic event
self.dispatchEvent('doubleClick', e);
// Are we on a node?
var element = new Element(e.target);
if (element.isNode())
self.dispatchEvent('doubleClickNode', {
node: graph.nodes(element.attr('data-node-id'))
});
else
self.dispatchEvent('doubleClickStage');
e.preventDefault();
e.stopPropagation();
}
// On over
function onOver(e) {
var target = e.toElement || e.target;
if (!self.settings('eventsEnabled') || !target)
return;
var el = new Element(target);
if (el.isNode()) {
self.dispatchEvent('overNode', {
node: graph.nodes(el.attr('data-node-id'))
});
}
else if (el.isEdge()) {
var edge = graph.edges(el.attr('data-edge-id'));
self.dispatchEvent('overEdge', {
edge: edge,
source: graph.nodes(edge.source),
target: graph.nodes(edge.target)
});
}
}
// On out
function onOut(e) {
var target = e.fromElement || e.originalTarget;
if (!self.settings('eventsEnabled'))
return;
var el = new Element(target);
if (el.isNode()) {
self.dispatchEvent('outNode', {
node: graph.nodes(el.attr('data-node-id'))
});
}
else if (el.isEdge()) {
var edge = graph.edges(el.attr('data-edge-id'));
self.dispatchEvent('outEdge', {
edge: edge,
source: graph.nodes(edge.source),
target: graph.nodes(edge.target)
});
}
}
// Registering Events:
// Click
container.addEventListener('click', click, false);
sigma.utils.doubleClick(container, 'click', doubleClick);
// Touch counterparts
container.addEventListener('touchstart', click, false);
sigma.utils.doubleClick(container, 'touchstart', doubleClick);
// Mouseover
container.addEventListener('mouseover', onOver, true);
// Mouseout
container.addEventListener('mouseout', onOut, true);
};
}).call(this);
;(function(undefined) {
'use strict';
if (typeof sigma === 'undefined')
throw 'sigma is not declared';
// Initialize packages:
sigma.utils.pkg('sigma.misc');
/**
* This method listens to "overNode", "outNode", "overEdge" and "outEdge"
* events from a renderer and renders the nodes differently on the top layer.
* The goal is to make any node label readable with the mouse, and to
* highlight hovered nodes and edges.
*
* It has to be called in the scope of the related renderer.
*/
sigma.misc.drawHovers = function(prefix) {
var self = this,
hoveredNodes = {},
hoveredEdges = {};
this.bind('overNode', function(event) {
var node = event.data.node;
if (!node.hidden) {
hoveredNodes[node.id] = node;
draw();
}
});
this.bind('outNode', function(event) {
delete hoveredNodes[event.data.node.id];
draw();
});
this.bind('overEdge', function(event) {
var edge = event.data.edge;
if (!edge.hidden) {
hoveredEdges[edge.id] = edge;
draw();
}
});
this.bind('outEdge', function(event) {
delete hoveredEdges[event.data.edge.id];
draw();
});
this.bind('render', function(event) {
draw();
});
function draw() {
var k,
source,
target,
hoveredNode,
hoveredEdge,
c = self.contexts.hover.canvas,
defaultNodeType = self.settings('defaultNodeType'),
defaultEdgeType = self.settings('defaultEdgeType'),
nodeRenderers = sigma.canvas.hovers,
edgeRenderers = sigma.canvas.edgehovers,
extremitiesRenderers = sigma.canvas.extremities,
embedSettings = self.settings.embedObjects({
prefix: prefix
});
// Clear self.contexts.hover:
self.contexts.hover.clearRect(0, 0, c.width, c.height);
// Node render: single hover
if (
embedSettings('enableHovering') &&
embedSettings('singleHover') &&
Object.keys(hoveredNodes).length
) {
hoveredNode = hoveredNodes[Object.keys(hoveredNodes)[0]];
(
nodeRenderers[hoveredNode.type] ||
nodeRenderers[defaultNodeType] ||
nodeRenderers.def
)(
hoveredNode,
self.contexts.hover,
embedSettings
);
}
// Node render: multiple hover
if (
embedSettings('enableHovering') &&
!embedSettings('singleHover')
)
for (k in hoveredNodes)
(
nodeRenderers[hoveredNodes[k].type] ||
nodeRenderers[defaultNodeType] ||
nodeRenderers.def
)(
hoveredNodes[k],
self.contexts.hover,
embedSettings
);
// Edge render: single hover
if (
embedSettings('enableEdgeHovering') &&
embedSettings('singleHover') &&
Object.keys(hoveredEdges).length
) {
hoveredEdge = hoveredEdges[Object.keys(hoveredEdges)[0]];
source = self.graph.nodes(hoveredEdge.source);
target = self.graph.nodes(hoveredEdge.target);
if (! hoveredEdge.hidden) {
(
edgeRenderers[hoveredEdge.type] ||
edgeRenderers[defaultEdgeType] ||
edgeRenderers.def
) (
hoveredEdge,
source,
target,
self.contexts.hover,
embedSettings
);
if (embedSettings('edgeHoverExtremities')) {
(
extremitiesRenderers[hoveredEdge.type] ||
extremitiesRenderers.def
)(
hoveredEdge,
source,
target,
self.contexts.hover,
embedSettings
);
} else {
// Avoid edges rendered over nodes:
(
sigma.canvas.nodes[source.type] ||
sigma.canvas.nodes.def
) (
source,
self.contexts.hover,
embedSettings
);
(
sigma.canvas.nodes[target.type] ||
sigma.canvas.nodes.def
) (
target,
self.contexts.hover,
embedSettings
);
}
}
}
// Edge render: multiple hover
if (
embedSettings('enableEdgeHovering') &&
!embedSettings('singleHover')
) {
for (k in hoveredEdges) {
hoveredEdge = hoveredEdges[k];
source = self.graph.nodes(hoveredEdge.source);
target = self.graph.nodes(hoveredEdge.target);
if (!hoveredEdge.hidden) {
(
edgeRenderers[hoveredEdge.type] ||
edgeRenderers[defaultEdgeType] ||
edgeRenderers.def
) (
hoveredEdge,
source,
target,
self.contexts.hover,
embedSettings
);
if (embedSettings('edgeHoverExtremities')) {
(
extremitiesRenderers[hoveredEdge.type] ||
extremitiesRenderers.def
)(
hoveredEdge,
source,
target,
self.contexts.hover,
embedSettings
);
} else {
// Avoid edges rendered over nodes:
(
sigma.canvas.nodes[source.type] ||
sigma.canvas.nodes.def
) (
source,
self.contexts.hover,
embedSettings
);
(
sigma.canvas.nodes[target.type] ||
sigma.canvas.nodes.def
) (
target,
self.contexts.hover,
embedSettings
);
}
}
}
}
}
};
}).call(this);