This repository has been archived on 2024-08-21. You can view files and clone it, but cannot push or open issues or pull requests.
sc-portal/README.md
Marsell Kukuljevic 51028156c9 Document installation of app, including in production. Add smf manifest so
we can run this in a Joyent-branded zone too.
2021-04-11 20:51:52 +02:00

3.7 KiB

Installing in Production

Be familiar with the steps in [Installation][] below, since it is needed to build the Angular app first.

Once the Angular app is built, provision a small base-64-lts 20.4.0 VM, connected solely to the external network (aka public Internet). From within the VM, the following steps are needed:

pkgin in gmake
mkdir -p /opt/spearhead/portal

From this repo, copy in bin/, cfg/, smf/, static/ (since this is a symlink, this means the build in app/dist should be copied into static/ in prod), and *. Notably, avoid app/ and node_modules. In production, adjust the config in /opt/spearhead/portal/cfg/prod.json. Lastly:

pushd /opt/spearhead/portal
npm install
svccfg import smf/service.xml
svcadm enable portal
popd

The application will now be running.

Installation

First install the server-side libraries:

npm install

Then install the Angular compiler needed for the client-side app:

npm install -g @angular/cli
pushd app && npm install && popd

Build the client-side app:

pushd app && npm run build && popd

Generate server certificates

pushd config
openssl genrsa -out key.pem
openssl req -new -key key.pem -out csr.pem
openssl x509 -req -days 9999 -in csr.pem -signkey key.pem -out cert.pem
rm csr.pem
popd

Configuration

Ensure the config file in config/ matches your details. If running in production, name the config file config/prod.json.

Relevant configuration attributes:

  • server.port: the port this server will serve the app from
  • server.key: path to the private key for TLS
  • server.cert: path to the PKIX certificate for TLS
  • urls.local: the domain or IP the SSO will redirect back to (aka this server)
  • urls.sso: the URL to the SSO
  • urls.cloudapi: the URL to cloudapi
  • key.user: name of Triton user who has "Registered Developer" permission set
  • key.id: SSH fingerprint of Triton user (same as what node-triton uses)
  • key.path: path to private key of Triton user

The SSH key used must be the correct format, e.g. generated with:

ssh-keygen -m PEM -t rsa -C "your@email.address"

Running the server

node bin/server.js config/prod.json

The server generates a lot of JSON data about every request. This is easier for a human to handle if they have bunyan installed ("npm install -g bunyan"), and instead:

node bin/server.js config/prod.json | bunyan

Endpoints

GET /*

This is where all the front-end code goes. All files will be served as-is as found in that directory (by default a symlink from static/ to app/dist). The default is static/index.html. There is no authentication; all files are public.

GET /api/login

Call this endpoint to begin the login cycle. It will redirect you to the SSO login page: an HTTP 302, with a Location header.

GET/POST/PUT/DELETE/HEAD /api/*

All calls will be passed through to cloudapi. For these calls to succeed, they MUST provide an X-Auth-Token header, containing the token returned from SSO.

Interaction cycle

client --- GET /api/login --------> this server
       <-- 302 Location #1 ----

client --- GET <Location #1> --> SSO server
       <separate SSO cycle>
       <-- 302 with token query arg

From now on call this server as if it were a cloudapi server (using cloudapi paths), except prefixing any path with "/api". Also always provide the X-Auth-Token.

For example, to retrieve a list of packages:

client --- GET /api/my/packages --> this server
       <-- 200 JSON body ------

The most useful cloudapi endpoints to begin with will be ListPackages, GetPackage, ListImages, GetImage, ListMachines, GetMachine, CreateMachine and DeleteMachine (see cloudapi docs).